

8路DI高速计数器,8路DO支持PWM输出,Modbus RTU模块 IBF63

产品特点:

- 8路开关量输入,8路开关量输出
- DI每一路都可用作计数器或者频率测量
- DO每一路都可独立输出PWM信号
- DI和DO都支持PNP, NPN切换功能
- 通过RS-485/232接口可以读取计数值
- 支持RS-485/232接口设定PWM输出
- 宽电源供电范围: 8~32VDC
- 可靠性高,编程方便,易于应用
- 标准DIN35导轨安装,方便集中布线
- 用户可编程设置模块地址、波特率等
- 支持 Modbus RTU 通讯协议,自动识别协议
- 低成本、小体积模块化设计
- 外形尺寸: 120 mm x 70 mm x 43mm

典型应用:

- 接近开关脉冲信号测量
- 流量计脉冲计数或流量测量
- 生产线产品计数
- 物流包裹数量计数
- LED灯光控制或电机控制
- 工控机外置计数器
- 智能工厂与工业物联网
- 脉冲传感器信号的测量
- 工业相机状态监测与控制

Data Acquisition Modules IBF63 SIGNAL: DI BIT 0-7 B DI, 8 DO DO BIT 0-7 OUTPUT: 232 OUTPUT: 485 Power/Comm Power/Comm

图1 IBF63 模块外观图

产品概述:

IBF63产品实现传感器和主机之间的信号采集,用来脉冲信号计数和设备控制。IBF63系列产品可应用在RS-232/485总线工业自动化控制系统,光电开关信号计数测量,PWM信号输出及频率测量等等。

产品包括信号隔离,脉冲信号捕捉,信号转换和RS-485串行通信。每个串口最多可接255只 IBF63系列模块,通讯方式采用ASCII码通讯协议或MODBUS RTU通讯协议,波特率可由代码设置,能与其他厂家的控制模块挂在同一RS-485总线上,便于计算机编程。

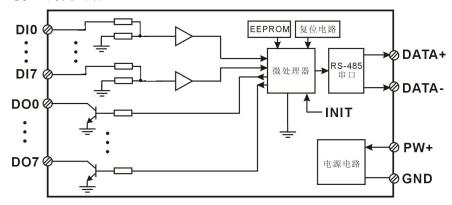


图 2 IBF63 模块内部框图

ЯŦ

Shen Zhen Beifu Technology Co., Ltd

IBF63系列产品是基于单片机的智能监测和控制系统,所有的用户设定的地址,波特率,数据格式,校验和 状态等配置信息都储存在非易失性存储器EEPROM里。

IBF63系列产品按工业标准设计、制造, 抗干扰能力强, 可靠性高。工作温度范围-45℃~+85℃。

功能简介:

IBF63远程I/O模块,可以用来测量八路开关量信号,并有八路开关量输出。可做为8路计数器或者8路频率测量, 也可以输出8路PWM信号。

1、开关量信号输入与输出

8 路开关量信号输入,可接干接点和湿接点,详细请参考接线图部分: 8 路开关量信号输出集电极开路输出, 也可以内部上拉输出。

2、通讯协议

通讯接口: 1路标准的 RS-485 通讯接口或 1路标准的 RS-232 通讯接口,订货选型时注明。

通讯协议:支持两种协议,命令集定义的字符协议和 MODBUS RTU 通讯协议。模块自动识别通讯协议, 能实现与多种品牌的 PLC、RTU 或计算机监控系统进行网络通讯。

数据格式: 10位。1位起始位,8位数据位,1位停止位。

通讯地址(0~255)和波特率(2400、4800、9600、19200、38400、57600、115200bps)均可设定;通讯 网络最长距离可达 1200米,通过双绞屏蔽电缆连接。

通讯接口高抗干扰设计,±15KV ESD 保护,通信响应时间小于 100mS。

3、抗干扰

可根据需要设置校验和。模块内部有瞬态抑制二极管,可以有效抑制各种浪涌脉冲,保护模块,内部的数 字滤波, 也可以很好的抑制来自电网的工频干扰。

产品选型:

选型举例 1: 型号: IBF63 -232 表示输出为 RS-232 接口 选型举例 2: 型号: IBF63-485 表示输出为 RS-485 接口

IBF63通用参数:

(typical @ +25°C, Vs为24VDC)

输入类型: 开关量输入,8通道(DI0~DI7)。

低电平: 输入 < 1V 高电平: 输入 3.5~30V

频率范围 0-20KHz

计数范围 0-0xFFFFFFFF

输入电阻: 30KΩ

输出类型: 集电极开路输出, 电压 0~30V, 最大负载电流 30mA, 8 通道(DO0~DO7)。

需要电平输出可以打开内部上拉电阻,内部的上拉电阻为 3K 欧姆。

PWM 频率 1~65535Hz, 占空比 0%~100%

诵 协议 RS-485 或 RS-232 标准字符协议 和 MODBUS RTU通讯协议 讯:

波特率(2400、4800、9600、19200、38400、57600、115200bps)可软件选择

地址 (0~255) 可软件选择

通讯响应时间: 100 ms 最大

工作电源: +8~32VDC 宽供电范围,内部有防反接和过压保护电路

功率消耗: 小于0.5W 工作温度: -45~+80℃ 工作湿度: 10~90%(无凝露)

存储温度: -45~+80℃

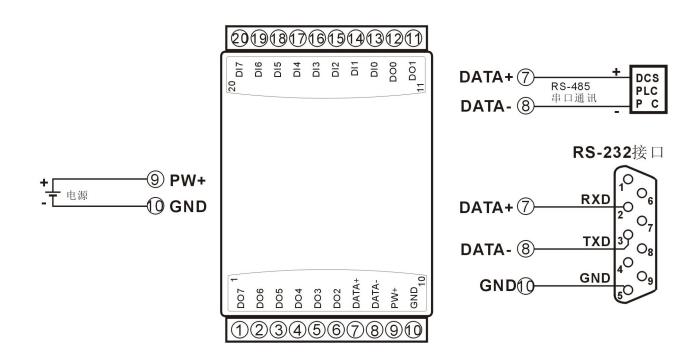
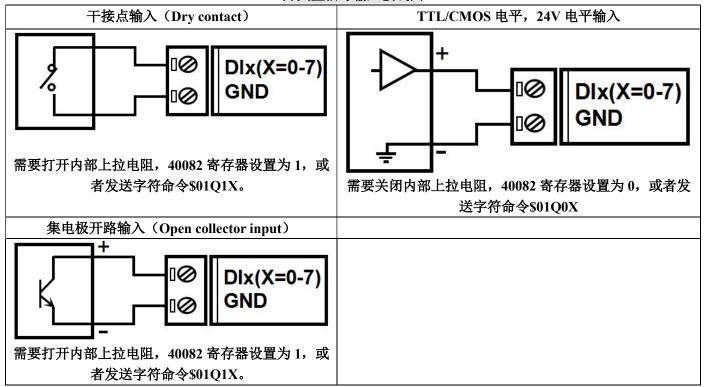
存储湿度: 10~95%(无凝露)

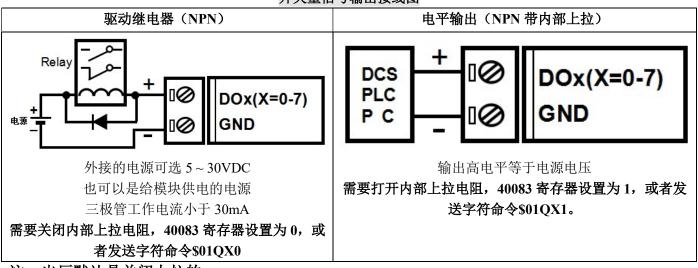
外形尺寸: 120 mm x 70 mm x 43mm

引脚定义:

引脚	名称	描述	引脚	名称	描述
1	DO7	通道7开关量信号输出端	11	DO1	通道1开关量信号输出端
2	DO6	通道6开关量信号输出端	12	DO0	通道0开关量信号输出端
3	DO5	通道5开关量信号输出端	13	DI0	通道0开关量信号输入端
4	DO4	通道4开关量信号输出端	14	DI1	通道1开关量信号输入端
5	DO3	通道3开关量信号输出端	15	DI2	通道2开关量信号输入端
6	DO2	通道2开关量信号输出端	16	DI3	通道3开关量信号输入端
7	DATA+	RS-485 信号正端	17	DI4	通道4开关量信号输入端
8	DATA-	RS-485 信号负端	18	DI5	通道5开关量信号输入端
9	PW+	电源正端	19	DI6	通道6开关量信号输入端
10	GND	电源负端,信号地	20	DI7	通道7开关量信号输入端

表1 引脚定义


图 3 IBF63 模块接线图

开关量信号输入接线图

注: 出厂默认是关闭上拉的

开关量信号输出接线图

注: 出厂默认是关闭上拉的

IBF63 字符协议命令集:

模块的出厂初始设置,如下所示:

地址代码为01

波特率 9600 bps

禁止校验和

如果使用 RS-485 网络,必须分配一个独一无二的地址代码,地址代码取值为 16 进制数在 00 和 FF 之间, 由于新模块的地址代码都是一样的,他们的地址将会和其他模块矛盾,所以当你组建系统时,你必须重新配置每 一个 IBF63 模块地址。可以在接好 IBF63 模块电源线和 RS485 通讯线后,通过配置命令来修改 IBF63 模块的地 址。波特率,校验和状态也需要根据用户的要求而调整。而在修改波特率,校验和状态之前,必须让模块先进入 缺省状态, 否则无法修改。

让模块进入缺省状态的方法:

IBF63 模块边上都有一个 INIT 的开关,在模块的侧面位置。将 INIT 开关拨到 INIT 位置,再接通电源,此 时模块进入缺省状态。在这个状态时,模块的配置如下:

地址代码为00

波特率 9600 bps

禁止校验和

这时,可以通过配置命令来修改 IBF63 模块的波特率,校验和状态等参数。在不确定某个模块的具体配置时, 也可以将 INIT 开关拨到 INIT 位置,使模块进入缺省状态,再对模块进行重新配置。

注: 正常使用时请将 INIT 开关拨到 NORMAL 位置。

字符协议命令由一系列字符组成,如首码、地址 ID,变量、可选校验和字节和一个用以显示命令结束符(cr)。 主机除了带通配符地址"**"的同步的命令之外,一次只指挥一个 IBF63 模块。

命令格式: (Leading Code)(Addr)(Command)[data][checksum](cr)

(Leading code) 首码是命令中的第一个字母。所有命令都需要一个命令首码,如%,\$,#,@,...等。 1- 字符

模块的地址代码, 如果下面没有指定, 取值范围从 00~FF(十六进制)。

2- 字符

(Command) 显示的是命令代码或变量值。

变量长度

[data] 一些输出命令需要的数据。 变量长度

[checksum] 括号中的Checksum(校验和)显示的是可选参数,只有在启用校验和时,才需要此选项。 2- 字符 识别用的一个控制代码符,(cr)作为回车结束符,它的值为0x0D。 1- 字符

当启用校验和(checksum)时,就需要[Checksum]。它占2-字符。命令和应答都必须附加校验和特性。校验和 用来检查所有输入命令,来帮助你发现主机到模块命令错误和模块到主机响应的错误。校验和字符放置在命令或 响应字符之后,回车符之前。

计算方法:两个字符,十六进制数,为之前所发所有字符的ASCII码数值之和,然后与十六进制数0xFF相与所得。

应用举例:禁止校验和(checksum)

用户命令 \$002(cr)

模块应答 !00020600 (cr)

启用校验和(checksum)

用户命令 \$002B6 (cr)

模块应答 !00020600 A9 (cr)

'\$' = 0x24 '0' = 0x30 '2' = 0x32

B6=(0x24+0x30+0x30+0x32) AND 0xFF

'!' = 0x210' = 0x302' = 0x326' = 0x36

A9=(0x21+0x30+0x30+0x30+0x32+0x30+0x36+0x30+0x30) AND 0xFF

命令的应答:

应答信息取决于各种各样的命令。应答也由几个字符组成,包括首代码,变量和结束标识符。应答信号的首

www.szbeifu.com

代码有两种, '!'或 '>'表示有效的命令而'?'则代表无效。通过检查应答信息,可以监测命令是否有效

- 注意: 1、在一些情况下,许多命令用相同的命令格式。要确保你用的地址在一个命令中是正确的,假如你用错 误的地址,而这个地址代表着另一个模块,那么命令会在另一个模块生效,因此产生错误。
 - 2、必须用大写字母输入命令。
 - 3、(cr)代表键盘上的回车符,不要直接写出来,应该是敲一下回车键(Enter 键)。

1、读取开关状态命令

明:从模块中读回所有输出通道开关量状态、开关量复位状态和输入通道开关量状态。

命令格式: #AA(cr)

参数说明: # 分界符。十六进制为 23H

AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式: >AAAAAAA,BBBBBBBB,CCCCCCC(cr) 命令有效。

?01(cr) 命令无效或非法操作。

参数说明: > 分界符。十六进制为 3EH

AAAAAAA 代表读取到的输出开关状态,8个数,排列顺序为DO7~DO0,

值为 0: 输出三极管断开; 值为 1: 输出三极管接通

BBBBBBB 代表读取到的复位后输出开关状态,8个数,排列顺序为DO7~DO0,

值为 0: 输出三极管断开; 值为 1: 输出三极管接通

CCCCCCC 代表读取到的输入开关状态,8个数,排列顺序为DI7~DI0,

值为 0: 输入低电平; 值为 1: 输入高电平

(cr) 结束符,上位机回车键,十六进制为0DH。

应用举例:

用户命令(字符格式) #**01(cr)**

模块应答(字符格式) >00011000,00001010,00000111(cr)

说 明:模块输出开关状态是 00011000, 排列顺序为 DO7~DO0

通道 0: 三极管断开 通道 1: 三极管断开 通道 2: 三极管断开 通道 3: 三极管接通

通道 4: 三极管接通 通道 5: 三极管断开 通道 6: 三极管断开 通道 7: 三极管断开

模块复位后输出开关状态是 00001010, 排列顺序为 DO7~DO0

通道 0: 三极管断开 通道 1: 三极管接通 通道 2: 三极管断开 通道 3: 三极管接通

通道 4: 三极管断开 通道 5: 三极管断开 通道 6: 三极管断开 通道 7: 三极管断开

模块输入开关状态是 00000111,排列顺序为 DI7~DI0

通道 0: 高电平 通道 1: 高电平 通道 2: 高电平 通道 3: 低电平

通道 4: 低电平 通道 5: 低电平 通道 6: 低电平 通道 7: 低电平

2、设置三极管输出命令

明:设置所有输出通道三极管状态。所有通道的出厂设置为00000000。

命令格式: #AA1ABCD(cr)

参数说明: # 分界符。十六进制为 24H

AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

1 表示设置三极管输出命令

通道选择, 可选择全部输出通道或单个输出通道。 AB

> 设置输出:设置AB为00,则表示对全部输出通道进行设置。如对单个通道进行设置,则字符A 必须设置为1,字符B可设为0-7,代表8个三极管DO输出通道。

> 设置复位输出:设置AB为FF,则表示设置全部通道的复位输出值。如对单个通道复位输出进

行设置,则字符A必须设置为E,字符B可设为0-7,代表8个三极管DO输出通道。

CD 输出值。

1, 如果是对所有通道设置(AB=00或AB=FF)

则为两个16进制数,如右图

C 代表 7~4 通道

D代表3~0通道

位值为 0:

D DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit2 Bit 1 Bit 0

设置输出三极管断开

位值为 1:

设置输出三极管接通

- 2, 如果是对单个通道设置(AB=1X或AB=EX,X表示要设定的通道),则只能设置为00或01,
 - 00: 设置X通道输出三极管断开
 - 01: 设置X通道输出三极管接通
- 结束符,上位机回车键,十六进制为 0DH。 (cr)

命令有效。 应答格式: !01(cr)

> 命令无效或非法操作。 ?01(cr)

应用举例 1: 用户命令(字符格式) #011000F(cr)

> 模块应答(字符格式) !01(cr)

说 明:设置所有通道(AB=00)的输出为0FH,转成2进制是00001111,

那么模块输出的开关状态是:

通道 0: 三极管接通 通道 1: 三极管接通 通道 2: 三极管接通 通道 3: 三极管接通

通道 4: 三极管断开 通道 5: 三极管断开 通道 6: 三极管断开 通道 7: 三极管断开

应用举例 2: 用户命令(字符格式) #0111201(cr)

> !01(cr) 模块应答(字符格式)

明:设置通道2的三极管接通。

应用举例 3: 用户命令(字符格式) #011FFFF(cr)

> 模块应答(字符格式) !01(cr)

明:设置所有通道(AB=FF)的复位输出为FFH,转成2进制是11111111,

那么模块复位后所有通道的三极管接通。

3、读计数器数据命令

明: 读取计数器的数据,可以读所有通道,也可以读单通道。

命令格式: #AA2(cr)

- 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII $\mathbf{A}\mathbf{A}$ 码。如地址01换成十六进制为30H和31H。
- 表示读通道0~通道7计数器数据命令。 2
- 结束符,上位机回车键,十六进制为0DH。

AAAA, AAAAAAAAAA, AAAAAAAAAA(cr)

命令格式: #AA2N(cr)

- 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。
- 表示读计数器数据命令。 2
- 表示读通道N计数器数据命令。 N
- (cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式: !AAAAAAAAA(cr)

应用举例 1: 用户命令(字符格式) #012(cr)

> 模块应答(字符格式) !0012345678, 0012345678, 0012345678, 0012345678, 0012345678,

0012345678, 0012345678, 0012345678 (cr)

明: 所有通道的计数值为 12345678。

用户命令(字符格式) 应用举例 2: #0120(cr)

> 模块应答 (字符格式) !0012345678(cr)

明: 通道 0 的计数值为 12345678。

4、读输入频率命令

明:读取输入的频率,可以读所有通道,也可以读单通道。

命令格式: #AA3

- 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。
- 表示读通道0~通道7输入频率命令。
- (cr) 结束符,上位机回车键,十六进制为0DH。

A.AA, AAAAAA.AA (cr)

命令格式: #AA3N 读通道 N 输入频率

- AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。
- 表示读输入频率命令。
- 表示读通道N输入频率命令。 N
- (cr) 结束符,上位机回车键,十六进制为0DH。

应答格式: !AAAAAA.AA (cr)

应用举例 1: 用户命令(字符格式) #013(cr)

> 模块应答(字符格式) !001000.00,001000.00,001000.00,001000.00,001000.00,001000.00,

001000.00,001000.00(cr)

明: 所有通道的输入频率值为 1KHz。

应用举例 2: 用户命令(字符格式) #0130(cr)

> 模块应答(字符格式) !001000.00(cr)

明: 通道 0 的输入频率值为 1KHz。

5、读输出 PWM 命令

明:读取输出的PWM,可以读所有通道,也可以读单通道,还可以读复位PWM值。

命令格式: #AA4(cr) 读通道 0~通道 7 的 PWM 值

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

www.szbeifu.com

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式:!AAA.AA, AAA.AA, AAA.AA, AAA.AA, AAA.AA, AAA.AA, AAA.AA, AAA.AA, AAA.AA, Cr)

命令格式: #AA4S(cr) 读通道 0~通道 7 复位 PWM 值

应答格式: !AAA.AA, AAA.AA, AAA.AA, AAA.AA, AAA.AA, AAA.AA, AAA.AA, AAA.AA

命令格式: #AA4N(cr) 读通道 N 的 PWM 值

应答格式: !AAA.AA(cr)

命令格式: #AA4SN(cr) 读通道 N 的复位 PWM 值

应答格式: !AAA.AA (cr)

应用举例 1: 用户命令(字符格式) #014(cr)

> ! 050.00,050.00,050.00,050.00,050.00,050.00,050.00,050.00(cr) 模块应答(字符格式)

说 明: 所有通道的 PWM 值为 50%。

用户命令(字符格式) 应用举例 2: #0140(cr)

> !050.00(cr) 模块应答(字符格式)

说 明: 通道 0 的 PWM 值为 50%。

6、设置 PWM 命令

明:设置输出的 PWM 值或者设置复位的 PWM 值,只能设置单通道。所有通道的出厂设置为 050.00。

设置通道 N 的 PWM 值 命令格式: #AA5NAAA.AA(cr)

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

> 通道,取值范围 0~7。 N

AAA.AA 设置输出的PWM值,取值范围 000.00~100.00

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式:!AA(cr) 表示设置成功

命令格式: #015SNAAA.AA(cr) 设置通道 N 的复位 PWM 值

应答格式:!AAcr) 表示设置成功

应用举例 1: 用户命令(字符格式) #0150050.00(cr)

模块应答(字符格式) !01(cr)

明:设置通道 0 的 PWM 值为 50%。

应用举例 2: 用户命令(字符格式) #015S0050.00(cr)

> 模块应答(字符格式) !01(cr)

明:设置通道 0 的复位 PWM 值为 50%。

7、读 PWM 的频率命令

明:读取输出的PWM频率,也可以读复位PWM频率。

命令格式: #AA6(cr) 读 PWM 频率

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

(cr) 结束符,上位机回车键,十六进制为0DH。

应答格式: !AAAAA, BBBBB (cr) AAAAA 代表 0~3 通道的频率,BBBBB 代表 4~7 通道的频率

命令格式: #AA6S 读复位 PWM 值

应答格式:!AAAAA,BBBBB (cr) AAAAA 代表 0~3 通道的复位频率,BBBBB 代表 4~7 通道的复位频率

应用举例 1: 用户命令(字符格式) #016(cr)

> 模块应答(字符格式) ! 01000,02000(cr)

明: 0~3 通道的 PWM 频率为 1KHz, 4~7 通道的 PWM 频率为 2KHz。

应用举例 2: 用户命令(字符格式) #016S(cr)

> ! 00100,00200 (cr) 模块应答(字符格式)

说 明: 0~3 通道的 PWM 复位频率为 100Hz, 4~7 通道的 PWM 复位频率为 200Hz。

8、设置 PWM 频率命令

明:设置输出的 PWM 频率或者设置复位的 PWM 频率,只能设置单通道。范围 00000~65535,设置为 00000 表示关闭 PWM 输出,输出为开关量电平输出。所有通道的出厂设置为00000。

श्रन

ShenZhen Beifu Technology Co.,Ltd

命令格式: #AA7NAAAAA(cr) N=0 表示设置通道 0~3 的 PWM 频率, N=1 表示设置通道 4~7 的 PWM 频率。

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式:!AA(cr) 表示设置成功

命令格式: #AA7SNAAAAA(cr) N=0 表示设置通道 0~3 的 PWM 复位频率,

N=1 表示设置通道 4~7 的 PWM 复位频率。

应答格式:!AA(cr) 表示设置成功

应用举例 1: 用户命令(字符格式) 模块应答(字符格式) #017000100(cr)

! 01(cr)

说 明:设置通道 0~3 的 PWM 频率为 100Hz。

应用举例 2: 用户命令(字符格式) #017S100500(cr)

> 模块应答 (字符格式) !01(cr)

说 明:设置通道 4~7 的复位 PWM 频率为 500Hz。

9、修改 DI 计数器的数值命令

明:修改 DI 计数器的值,也可以设置为零重新计数。

命令格式: \$AA1NAAAAAAAA(cr) 修改通道 N 的计数值

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

(cr) 结束符,上位机回车键,十六进制为0DH。

应答格式:!AA(cr) 表示设置成功

应用举例: 用户命令(字符格式) \$0115000000000(cr)

模块应答(字符格式) !01(cr) 说明:设置通道5的计数值为0。

10、设置 PWM 输出取反命令

说 明:设置 PWM 输出是否要高低电平取反后输出。出厂设置为 00000000。

命令格式: \$AA3BBBBBBBB(cr) 设置 PWM 输出是否取反命令。

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式:!AA(cr) 表示设置成功

参数说明: BBBBBBB 代表开关状态,8个数,排列顺序为DO7~DO0

值为 0: 该通道 PWM 正常输出; 值为 1: 该通道 PWM 取反输出

应用举例: 用户命令(字符格式) **\$01300000000(cr)**

模块应答(字符格式) ! 01(cr)

明:设置所有通道 PWM 正常输出。 说

11、读取 PWM 输出是否取反命令

明:读取PWM输出是否有设置取反。 说

命令格式: \$AA4(cr) 读取 PWM 输出是否取反命令。

参数说明: AA 模块地址,取值范围 $00\sim FF(+$ 方进制)。出厂地址为01,转换成十六进制为每个字符的ASCII码。如地址01换成十六进制为30H和31H。

(cr) 结束符,上位机回车键,十六进制为0DH。

应答格式: !BBBBBBBB (cr) 表示 PWM 输出是否有设置取反

参数说明: BBBBBBB 代表开关状态,8个数,排列顺序为DO7~DO0

值为 0: 该通道 PWM 正常输出;值为 1:该通道 PWM 取反输出

应用举例: 用户命令(字符格式) \$014(cr)

> 模块应答(字符格式) ! 11111110(cr)

明: 0 通道 PWM 正常输出, 1~7 通道 PWM 取反后输出。

12、设置 DI 计数器的计数方式

明:设置 DI 计数器是上升沿计数还是下降沿计数。出厂设置为 00000000。设置在模块重启后生效。

命令格式: \$AA5BBBBBBBB(cr) 设置 DI 计数器的计数方式。

参数说明: **AA** 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式:!AA(cr) 表示设置成功

参数说明: BBBBBBB 代表开关状态, 8 个数, 排列顺序为 DI7~DI0

值为 0: 该通道上升沿计数; 值为 1: 该通道下降沿计数

应用举例: 用户命令(字符格式) \$01511110000(cr)

> 模块应答(字符格式) ! 01(cr)

明:设置 7~4 通道下降沿计数,设置 3~0 通道上升沿计数。

13、读取 DI 计数器的计数方式

明: 读取 DI 计数器是上升沿计数还是下降沿计数。

命令格式: \$AA6(cr) 读取 DI 计数器的计数方式。

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式: ! BBBBBBB (cr) 表示 DI 计数器的计数方式。

参数说明: BBBBBBB 代表开关状态,8个数,排列顺序为DI7~DI0

值为 0: 该通道上升沿计数: 值为 1: 该通道下降沿计数

应用举例: 用户命令(字符格式) \$016(cr)

模块应答(字符格式) ! 11111110(cr)

说明: 0 通道上升沿计数, 1~7 通道下降沿计数。

14、设置 DI 的每转脉冲数

明:设置 DI 的每转脉冲数。根据接入 DI 的设备参数来设定,出厂默认值为 1000,设置正确的脉冲数后 才可以读出 DI 转速。

命令格式: \$AA7NAAAAA 设置DI通道N的每转脉冲数。AAAAA代表脉冲数,如1000,800或 者600等。

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

应答格式:!AA(cr) 表示设置成功

应用举例: 用户命令(字符格式) \$017100300

模块应答(字符格式) ! 01(cr)

明:设置 DII 的每转脉冲数为 300。

15、读取 DI 的每转脉冲数

明: 读取所有 DI 通道的每转脉冲数。

命令格式: \$AA8 读取所有 DI 的每转脉冲数,排列顺序 0~7。

参数说明: **AA** 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

应答格式:!AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA, AAAAA (cr)

表示 DI0~DI7 的每转脉冲数。

应用举例: 用户命令(字符格式) \$018

> 模块应答 (字符格式) ! 01000, 01000, 01000, 01000, 01000, 01000, 01000, 01000 (cr)

明: 所有 DI 通道的每转脉冲数都是 1000。

16、设置 DI 计数值断电是否自动保存

明:设置 DI 的计数值断电是否自动保存,出厂默认值为 0 (不自动保存,断电清零)。

命令格式: \$AASW

参数说明: **AA** 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

设置DI的计数值断电是否自动保存命令。

0: 不自动保存, 断电清零; 1: 断电自动保存DI计数值。

表示设置成功 应答格式:!AA(cr)

应用举例: 用户命令(字符格式) **\$01S0**

> 模块应答(字符格式) ! 01(cr)

明:设置 DI 不保存计数值,断电后自动清零计数。

17、设置 DI 和 DO 的上拉开关

明:设置 DI 和 DO 的上拉开关,出厂默认值为 00 (DI 和 DO 都关闭上拉功能)。

命令格式: \$AAQXY

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

> O 设置DI和DO的上拉开关命令。

0: DI关闭上拉电压; 1: DI接通上拉电压。X: 保持原来的设置。 X

0: DO关闭上拉电压; 1: DO接通上拉电压。X: 保持原来的设置。

应答格式: !AA(cr) 表示设置成功

应用举例: 用户命令(字符格式) \$01Q11

> 模块应答(字符格式) ! 01(cr)

明:设置 DI 和 DO 都接通上拉电压。DI 是 NPN 输入时可以设置为接通 DI 上拉电压。 DO 需要电压输出时可以设置接通 DO 上拉电压。

18、设置 DI 的滤波时间

明:设置 DI的滤波时间。1表示 1mS,出厂默认是 0。光电开关输入设置为 0,机械开关或者继电器输入 建议设置为 20~100mS。设置重启后生效。

命令格式: \$AALWNAAAAA 设置DI通道N的滤波时间。N为计数器代号,取值012345678,对应DI0~DI7,设 置N为'M'时表示同时设置所有通道的滤波时间。AAAAA代表滤波时间, 如0,20或者50等。

参数说明: AA 模块地址,取值范围 $00\sim FF(+$ 方进制)。出厂地址为01,转换成十六进制为每个字符的ASCII码。如地址01换成十六进制为30H和31H。

应答格式: !AA(cr) 表示设置成功

应用举例: 用户命令(字符格式) \$01LW100020

> 模块应答(字符格式) ! 01(cr)

明:设置 DI1 的滤波时间为 20,即 20mS。

19、读取 DI 的滤波时间

明: 读取所有 DI 通道的滤波时间。

命令格式: \$AALR 读取所有 DI 的滤波时间,排列顺序 DI0~DI7。

参数说明: AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

表示 DI0~DI7 的滤波时间。

应用举例: 用户命令(字符格式) **\$01LR**

> 模块应答(字符格式) ! 00020, 00020, 00020, 00020, 00020, 00020, 00020, 00020 (cr)

明: 所有 DI 通道的滤波时间都是 20mS。

20、设置以上字符命令设置的所有参数恢复出厂设置。

明:设置模块用以上字符命令设置的参数恢复为出厂设置,完成后模块自动重启。

命令格式: \$AA900(cr) 设置参数恢复出厂设置。

参数说明: AA 模块地址,取值范围 $00\sim FF(+$ 方进制)。出厂地址为01,转换成十六进制为每个字符的ASCII码。如地址01换成十六进制为30H和31H。

(cr) 结束符,上位机回车键,十六进制为 0DH。

表示设置成功,模块会自动重启。 应答格式:!AA(cr)

应用举例: 用户命令(字符格式) \$01900

模块应答(字符格式) !01(cr)

说 明:参数恢复出厂设置。

21、配置 IBF63 模块命令

明:对一个IBF63模块设置地址,波特率,校验和状态。配置信息储存在非易失性存储器 EEPROM 里。

命令格式: %AANNTTCCFF(cr)

参数说明:% 分界符。

AA 模块地址,取值范围 00~FF(十六进制)。

NN 代表新的模块 16 进制地址,数值 NN 的范围从 00 到 FF。

TT 用 16 进制代表类型编码。 IBF63 产品必须设置为 00。

CC 用 16 进制代表波特率编码。

波特率代码	波特率
04	2400 baud
05	4800 baud
06	9600 baud
07	19200 baud
08	38400 baud
09	57600 baud
0A	115200 baud

表 2 波特率代码

用 16 进制的 8 位代表数据格式,校验和。注意从 bits2 到 bits5 不用必须设置为零。 FF

Bit7 Bit 6 Bit 5 B	t 4 Bit 3 Bit2	Bit 1 Bit 0
--------------------	----------------	-------------

表 3 数据格式,校验和代码

Bit7: 保留位,必须设置为零

Bit6: 校验和状态, 为 0: 禁止; 为 1: 允许

Bit5-bit2:不用,必须设置为零。

Bit1-bit0: 数据格式位。 00: 工程单位(Engineering Units)

10: 16 进制的补码(Twos complement)

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式: !AA(cr) 命令有效。

?AA(cr) 命令无效或非法操作,或在改变波特率或校验和前,没有安装配置跳线。

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 代表输入模块地址

(cr) 结束符,上位机回车键,十六进制为 0DH。

其他说明:假如你第一次配置模块,AA=00、NN 等于新的地址。假如重新配置模块改变地址、输入范围、数据格式,AA 等于当前已配置的地址,NN 等于当前的或新的地址。假如要重新配置模块改变波特率或校验和状态,则必须安装配置跳线,使模块进入缺省状态,此时模块地址为 00H,即 AA=00H,NN 等于当前的或新的地址。

假如格式错误或通讯错误或地址不存在,模块不响应。

应用举例: 用户命令 %0011000600(cr)

模块应答 !11(cr)

说明:%分界符。

00 表示你想配置的IBF63模块原始地址为00H。

11 表示新的模块 16 进制地址为 11H。

00 类型代码, IBF63 产品必须设置为 00。

06 表示波特率 9600 baud。

00 表示数据格式为工程单位,禁止校验和。

22、读配置状态命令

说 明: 对指定一个 IBF63 模块读配置。

命令格式: **\$AA2(cr)**

参数说明: \$ 分界符。

AA 模块地址,取值范围 00~FF(十六进制)。

2 表示读配置状态命令

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式:!AATTCCFF(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符。

AA 代表输入模块地址。

TT 代表类型编码。

CC 代表波特率编码。见表 2

FF 见表 3

(cr) 结束符,上位机回车键,十六进制为 0DH。

其他说明: 假如格式错误或通讯错误或地址不存在, 模块不响应。

应用举例: 用户命令 \$302(cr)

模块应答 !300F0600(cr)

说明:! 分界符。

30 表示IBF63模块地址为30H。

00 表示输入类型代码。

06 表示波特率 9600 baud。

00 表示禁止校验和。

Modbus RTU 通讯协议:

模块的出厂初始设置,如下所示: **Modbus 地址为 01** 波**特率 9600 bps**

让模块进入缺省状态的方法:

IBF63模块边上都有一个INIT的开关,在模块的侧面位置。将INIT开关拨到INIT位置,再接通电源,此时模块进入缺省状态。在这个状态时,模块暂时恢复为默认的状态:地址为01,波特率为9600。在不确定某个模块的具体配置时,用户可以查询地址和波特率的寄存器40201-40202,得到模块的实际地址和波特率,也可以跟据需要修改地址和波特率。

注: 正常使用时请将 INIT 开关拨到 NORMAL 位置。

支持Modbus RTU通讯协议,命令格式按照标准Modbus RTU通讯协议。

IBF63 支持的功能码,详见如下:

功能码		名称	说明		
01	Read Coil Status	读取线圈状态	1表示高电平,0表示低电平。		
03	Read Holding Register	读保持寄存器	1表示高电平,0表示低电平。		
05	Write Single Coil	写单个线圈	1表示三极管导通, 0表示三极管断开。		
06	Write Single Register	写单个寄存器	1表示三极管导通, 0表示三极管断开。		
15	Write Multiple Coils	写多个线圈			
16	Write Multiple Registers	写多个寄存器			

寄存器说明:

支持功能码 01, 05, 15 的寄存器

支持功能码 01, 0 地址 0X (PLC)	地址(PC,DCS)	数据内容	属性	数据说明
00001	0	DOO 输出的开关量	读/写	DO 通道 0~7 的输出状态
00001	1	DOI 输出的开关量	读/写	0表示三极管断开,
00003	2	DO2 输出的开关量	读/写	1表示三极管导通
00004	3	DO3 输出的开关量	读/写	
00005	4	DO4 输出的开关量	读/写	
00006	5	DO5 输出的开关量	读/写	
00007	6	DO6 输出的开关量	读/写	
00008	7	DO7 输出的开关量	读/写	
00009	8	DO0 输出的开关量	读/写	DO 通道 0~7 的复位输出状态
00010	9	DO1 输出的开关量	读/写	(默认值为0)
00011	10	DO2 输出的开关量	读/写	0表示复位后三极管断开,
00012	11	DO3 输出的开关量	读/写	1表示复位后三极管导通
00013	12	DO4 输出的开关量	读/写	
00014	13	DO5 输出的开关量	读/写	
00015	14	DO6 输出的开关量	读/写	
00016	15	DO7 输出的开关量	读/写	
00017	16	DO 通道 0 输出取反	读/写	DO 通道 0~7, (默认值为 0)
00018	17	DO 通道 1 输出取反	读/写	0表示 PWM 正常输出,
00019	18	DO 通道 2 输出取反	读/写	1表示 PWM 取反后输出
00020	19	DO 通道 3 输出取反	读/写	
00021	20	DO 通道 4 输出取反	读/写	
00022	21	DO 通道 5 输出取反	读/写	
00023	22	DO 通道 6 输出取反	读/写	
00024	23	DO 通道 7 输出取反	读/写	
00025	24	DIO 输入的计数方式	读/写	DI 通道 0~7,(默认值为 0)
00026	25	DII 输入的计数方式	读/写	0 为上升沿计数,
00027	26	DI2 输入的计数方式	读/写	1 为下降沿计数
00028	27	DI3 输入的计数方式	读/写	
00029	28	DI4 输入的计数方式	读/写	
00030	29	DI5 输入的计数方式	读/写	
00031	30	DI6 输入的计数方式	读/写	
00032	31	DI7 输入的计数方式	读/写	
00033	32	DIO 输入的开关量	只读	DI 通道 0~7 的电平状态
00034	33	DI1 输入的开关量	只读	0表示低电平输入,
00035	34	DI2 输入的开关量	只读	1 表示高电平输入
00036	35	DI3 输入的开关量	只读	
00037	36	DI4 输入的开关量	只读	
00038	37	DI5 输入的开关量	只读	
00039	38	DI6 输入的开关量	只读	
00040	39	DI7 输入的开关量	只读	

Shen Zhen Beifu Technology Co.,Ltd 支持功能码 03,06,16 的寄存器,表格中的地址是十进制数。32 位长整数和浮点数存储顺序为 CDAB。

地址 4X (PLC)	地址(PC,DCS)	数据内容	属性	数据说明
40001	0	DO 输出 PWM0	读/写	DO 输出通道 0~7, PWM 输出值,
40002	1	DO 输出 PWM1	读/写	整数,范围 0~10000
40003	2	DO 输出 PWM2	读/写	
40004	3	DO 输出 PWM3	读/写	
40005	4	DO 输出 PWM4	读/写	
40006	5	DO 输出 PWM5	读/写	
40007	6	DO 输出 PWM6	读/写	
40008	7	DO 输出 PWM7	读/写	
40009	8	DO 通道 0~3 频率	读/写	脉冲频率,(默认值为0)
40010	9	DO 通道 4~7 频率	读/写	整数,范围 0~65535 Hz
				设置为0,表示开关量输出
				设置为 1~65535,表示 PWM 输出
40017~40018	16~17	DI 通道 0 计数	读/写	长整数(0x00000000~0xFFFFFFF),
40019~40020	18~19	DI 通道 1 计数	读/写	DI 通道 0~7 计数。
40021~40022	20~21	DI 通道 2 计数	读/写	存储顺序为 CDAB。
40023~40024	22~23	DI 通道 3 计数	读/写	通道 0 低 16 位在寄存器 40017,
40025~40026	24~25	DI 通道 4 计数	读/写	通道 0 高 16 位在寄存器 40018,
40027~40028	26~27	DI 通道 5 计数	读/写	其他通道同样规律。
40029~40030	28~29	DI 通道 6 计数	读/写	
40031~40032	30~31	DI 通道 7 计数	读/写	
40041	40	DI0 的每转脉冲数	读/写	无符号整数(出厂默认值为 1000),根
40042	41	DI1 的每转脉冲数	读/写	据每转脉冲数来设定,设置后寄存器
40043	42	DI2 的每转脉冲数	读/写	- 40101~40108 就是对应通道的转速。
40044	43	DI3 的每转脉冲数	读/写	
40045	44	DI4 的每转脉冲数	读/写	
40046	45	DI5 的每转脉冲数	读/写	
40047	46	DI6 的每转脉冲数	读/写	
40048	47	DI7 的每转脉冲数	读/写	
40065	64	PWM0 复位输出值	读/写	第 0~7 通道 PWM 复位输出值,
40066	65	PWM1 复位输出值	读/写	(默认值为 5000)
40067	66	PWM2 复位输出值	读/写	整数,范围 0~10000
40068	67	PWM3 复位输出值	读/写	
40069	68	PWM4 复位输出值	读/写	1
40070	69	PWM5 复位输出值	读/写	-
40071	70	PWM6 复位输出值	读/写	1
40072	71	PWM7 复位输出值	读/写	1
40073	72	通道 0~3 频率复位值	读/写	脉冲频率复位输出值,(默认值为0)
40074	73	通道 4~7 频率复位值	读/写	整数,范围 0~65535 Hz
TUU/ T	13	地地 + *1 /吹干久世祖	以一	设置为 0,表示开关量输出

地址 4X (PLC)	地址 (PC, DCS)	数据内容	属性	数据说明
40081	80	DI 计数值自动保存	读/写	0: 不自动保存,断电清零;(默认值为0)
				1: 断电自动保存 DI 计数值。
40082	81	DI 的上拉开关	读/写	0: DI关闭上拉电压; (默认值为0)
				1: DI 接通上拉电压。
40083	82	DO 的上拉开关	读/写	0: DO 关闭上拉电压; (默认值为 0)
				1: DO 接通上拉电压。
40089	88	参数恢复出厂设置	读/写	设置为 FF00,则模块所有寄存器的参数
				恢复为出厂设置,完成后模块自动重启
40101	100	DI 泽泽 o 砂井 法	口法	工が口帯Ψ
40101	100	DI 通道 0 的转速	只读	无符号整数。
40102	101	DI 通道 1 的转速	只读	转速是根据寄存器 40041~40048 设定的
40103	102	DI 通道 2 的转速	只读	脉冲数换算得到。
40104	103	DI 通道 3 的转速	只读	
40105	104	DI 通道 4 的转速	只读	
40106	105	DI 通道 5 的转速	只读	
40107	106	DI 通道 6 的转速	只读	
40108	107	DI 通道 7 的转速	只读	
40129~40130	128~129	DI 通道 0 的频率	只读	32 位浮点数,采集到的频率。
		DI 通道 U 的频率		72 位行点数,未集到的频率。 存储顺序为 CDAB。
40131~40132 40133~40134	130~131	DI 通道 1 的频率	只读	」 付曜
40135~40134	132~133 134~135		只读	40145~40160 寄存器
		DI 通道 3 的频率	只读	40143~40100 日 行 福
40137~40138	136~137	DI 通道 4 的频率	只读	
40139~40140 40141~40142	138~139	DI 通道 5 的频率	只读	
	140~141	DI 通道 6 的频率	只读	
40143~40144	142~143	DI 通道 7 的频率	只读	22 位 以 軟 料 一 可 住 不 的 好 示 方
40145~40146	144~145	DI 通道 0 的频率	只读	32 位长整数,采集到的频率。
40147~40148	146~147	DI 通道 1 的频率	只读	存储顺序为 CDAB。
40149~40150	148~149	DI 通道 2 的频率	只读	通道 0 低 16 位在寄存器 40129, 通道 0 高 16 位在寄存器 40130,
40151~40152	150~151	DI通道3的频率	只读	其他通道同样规律。
40153~40154	152~153	DI 通道 4 的频率	只读	共他超起的件 然 件。
40155~40156	154~155	DI 通道 5 的频率	只读	
40157~40158	156~157	DI 通道 6 的频率	只读	
40159~40160	158~159	DI 通道 7 的频率	只读	
40181~40188	180~187	DI 通道 0~7 的	读/写	DI 通道 0~7 的滤波时间
±0101~±0100	100-107	滤波时间	以/一	DI
		小心 ()又中门[中]		的滤波时间。1 表示滤波时间 1mS, 光电
				开关输入设置为 0, 机械开关或者继电
				器输入建议设置为 20~100mS。设置重启
				后生效。
				/H 1_/X °

地址 4X (PLC)	地址 (PC, DCS)	数据内容	属性	数据说明
40201	200	模块地址	读/写	整数, 重启后生效, 范围 0x0000-0x00FF
40202	201	波特率	读/写	整数,重启后生效,范围 0x0004-0x000A
				0x0004 = 2400 bps,
				0x0005 = 4800 bps
				0x0006 = 9600 bps,
				0x0007 = 19200 bps
				0x0008 = 38400 bps,
				0x0009 = 57600 bps
				0x000A = 115200bps
40211	210	模块名称	只读	高位: 0x00 低位: 0x63

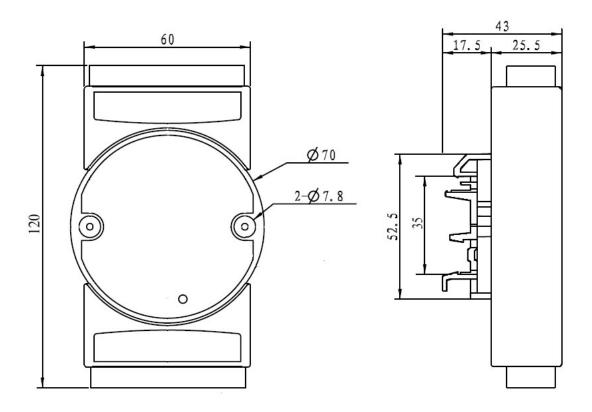
表 5 Modbus Rtu 寄存器说明

通讯举例 1: 假如模块地址为 01,以 16 进制发送: 01030000001840A,即可取得寄存器的数据。

01	03	00	00	00	01	84	0A
模块地址	读保持寄存器	寄存器地址高位	寄存器地址低位	寄存器数量高位	寄存器数量低位	CRC 校验低位	CRC 校验高位

假如模块回复: 0103020333F8A1 即读到的数据为 0x0333,换成 10 进制为 819,即表明现在通道 0 的 PWM 输出为 8.19%。

01	03	02	03	33	F8	A1
模块地址	读保持寄存器	数据的字节数	数据高位	数据低位	CRC 校验低位	CRC 校验高位


通讯举例 2: 假如模块地址为 01,以 16 进制发送: 010300100002C5CE,即可取得寄存器的数据。

01	03	00	10	00	02	C5	CE
模块地址	读保持寄存器	寄存器地址高位	寄存器地址低位	寄存器数量高位	寄存器数量低位	CRC 校验低位	CRC 校验高位

假如模块回复: 01030400640000BBEC 即读到的数据高 16 位为 0x0000,低 16 位为 0x00064,高低位合并为 0x00000064,换成 10 进制为 100,即表明现在通道 0 的计数值为 100。

01	03	04	00	64	00	00	BB	EC
模块地址	读保持寄存器	数据的字节数	数据低 16 位		数据高16	6位	CRC 校验低位	CRC 校验高位

外形尺寸: (单位: mm)

可以安装在标准 DIN35 导轨上

保修:

本产品自售出之日起两年内,凡用户遵守贮存、运输及使用要求,而产品质量低于技术指标的,可以返厂免费维修。因违反操作规定和要求而造成损坏的,需交纳器件费用和维修费。

版权:

版权 © 2021 深圳市贝福科技有限公司。

如未经许可,不得复制、分发、翻译或传输本说明书的任何部分。本说明书如有修改和更新,恕不另行通知。

商标:

本说明书提及的其他商标和版权归各自的所有人所有。

版本号: V1.5 日期: 2022年3月