

1路编码器或2路DI脉冲计数器,Modbus TCP协议,WiFi模块 IBF161

产品特点:

- 编码器解码转换成标准Modbus TCP协议
- 可用作编码器计数器或者转速测量
- 支持编码器计数,可识别正反转,支持4倍频计数
- 也可以设置作为2路独立DI高速计数器
- 计数值断电自动保存
- DI输入支持PNP和NPN输入
- 继电器和机械开关输入时可以设置滤波时间
- 通过WiFi可以清零和设置计数值
- 内置网页功能,可以通过网页查询数据
- 一路PNP的DO输出,可以直接驱动继电器
- 宽电源供电范围: 8~32VDC
- 可靠性高,编程方便,易于应用
- 标准DIN35导轨安装,方便集中布线
- 用户可在网页上设置模块IP地址和其他参数
- 低成本、小体积、模块化设计
- 外形尺寸: 79 x 69.5x 25mm

典型应用:

- 编码器脉冲信号测量
- 流量计脉冲计数或流量测量
- 生产线产品计数
- 物流包裹数量计数
- 接近开关脉冲信号测量
- 编码器信号远传到工控机
- 水表或电表脉冲计数
- 智能工厂与工业物联网
- 冲床次数计数
- 注塑产品数量计数
- MES系统数据统计

产品概述:

IBF161产品是一种物联网和工业以太网采集模块,实现了传感器与网络之间形成透明的数据交互。可以将传感器的开关量数据转发到网络。

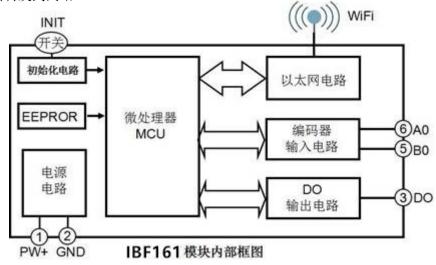


图 2 IBF161 模块内部框图

IBF161 系列产品包括电源调理,开关量采集和 WiFi 网络接口通信。通讯方式采用 MODBUS TCP 协议。TCP 是基于传输层的协议,它是使用广泛,面向连接的可靠协议。用户可直接在网页上设置模块 IP 地址、子网掩码等。可用来对传感器设备的运行监测与控制。

IBF161 系列产品是基于单片机的智能监测和控制系统,用户设定的模块 IP 地址、子网掩码等配置信息都储存在非易失性存储器 EEPROM 里。

IBF161 系列产品按工业标准设计、制造, 抗干扰能力强, 可靠性高。工作温度范围- 45℃~+85℃。

功能简介:

IBF161 远程I/O模块,可以用来测量1路编码器信号,也可以设置作为2路独立计数器或者DI状态测量。

- 1、信号输入
 - 1路编码器信号输入或2路独立计数器,可接干接点和湿接点,通过命令设置输入类型。
- 2、信号输出

1路 DO 信号输出,输出高电平约等于电源电压,低电平为 0V,可以直接驱动中间继电器。

3、 通讯协议

通讯接口: WiFi 网络接口。可以连接到局域网里的 WiFi。

通讯协议:采用 MODBUS TCP 协议,实现工业以太网数据交换。也可以通过 TCP socket 和模块通讯。 网络缓存: 2K Byte (收与发都是)

通信响应时间:小于10mS。

4、抗干扰

模块内部有瞬态抑制二极管,可以有效抑制各种浪涌脉冲,保护模块。

产品型号:

IBF161通用参数:

(typical @ +25°C, Vs为24VDC)

输入类型: 编码器 AB 信号输入, 1 通道(A0/B0)。

> 低电平: 输入 <1V 高电平: 输入 3.5~30V

频率范围 0-20KHz。

编码器计数范围 - 2147483647~+2147483647

DI 计数器范围 0~4294967295

输入电阻: 30KΩ

输出类型: DO 输出电压信号, PNP 输出,可以直接驱动中间继电器。

低电平(0): 0V

高电平(1): 电源电压 - 1V ; 电流最大 100mA(未限流,请勿对 GND 短路)。

通 讯: MODBUS TCP通讯协议 或者 TCP socket字符协议

XX 页: 支持网页访问模块,支持网页设置模块参数。

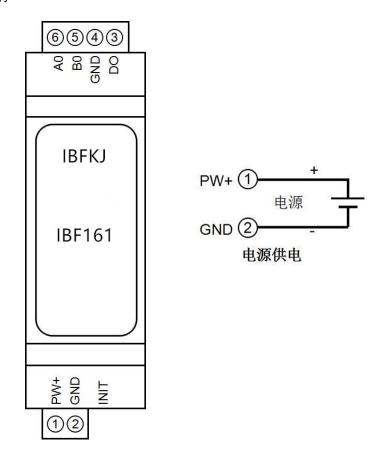
接 口: WiFi网络接口。

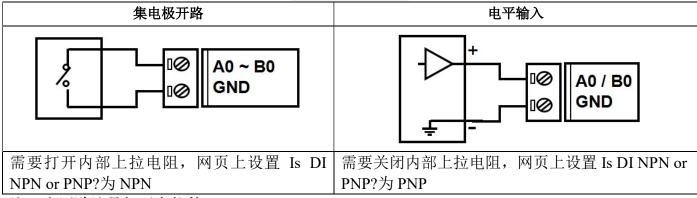
工作电源: +8~32VDC 宽供电范围,内部有防反接和过压保护电路

小于 1W 功率消耗: 工作温度: - 45 ~ +80°C 工作湿度: 10~90%(无凝露)

存储温度: -45~+80℃

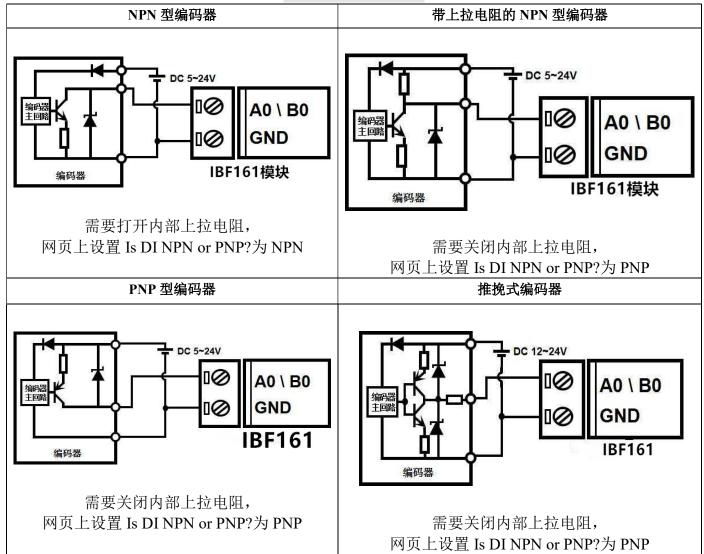
存储湿度: 10~95%(无凝露)


外形尺寸: 79 mm x 69.5mm x 25mm

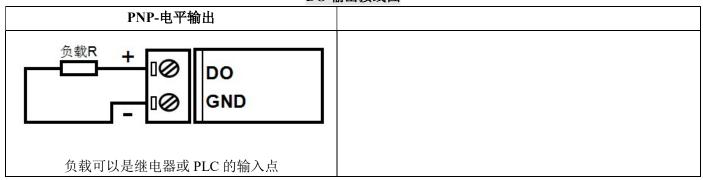

引脚定义与接线:

引脚	名 称	描述	引脚	名称	描述
1	PW+	电源正端	3	DO	开关量信号输出端
2	GND	电源负端,信号公共地	4	GND	信号公共地
平木	INIT	,	5	В0	编码器信号 B0 输入端
开关	INIT	进入 AP 配置模式开关	6	A0	编码器信号 A0 输入端

注: 同名引脚内部是相连的


DI 计数输入接线图

注: 出厂默认是打开上拉的



编码器信号输入接线图

注: 出厂默认是打开上拉的

DO 输出接线图

首先通过手机配置IBF161模块

..... 中国移动 4G

2,输入密码。

此模块出厂密码为: 12345678, 然后"加入"。

	wifi8	HO SH
	登录	取消
WiFi SS	ID	
WiFi pas	ssword	
•••••	••	
IP addre	ess	
192.168	.0.5	
Gateway	У	
192.168	.0.1	
Subnet	mask	
255.255	.255.0	
Work Mo	ode	
2		
2	ort Number	

3,进入设置界面

请根据实际需要修改以下参数:

(1) WiFi SSID

连接此地覆盖的 WiFi

(2) WiFi password

填入 WiFi 的密码,如果已经连接不用重复输入。

(3) IP address

设置模块的 IP 地址,必须是当前 WiFi 所在的网段,且不要和局域网内其他设备的 IP 地址相同。

例如: WiFi 路由器的 IP 是 192.168.0.1,那么可以设置模块的 IP 为 192.168.0.7

(4) Gateway

模块的网关,填当前 WiFi 路由器的 IP 地址。

例如: WiFi 路由器的 IP 是 192.168.0.1, 填写这个 IP 地址就行

(5) Subnet mask

模块的子网掩码,如果没有跨网段,

填默认值 255.255.255.0 即可

(6) Work Mode

选择工作模式,根据实际应用填写。

0:TCP Server

1:TCP Client

2:UDP

Ø 52% ■

DI Data Auto Se	end Setting	
0		
Auto Command		
#0120		
Auto Command	Time	
0		
A0 Filter Time		
0		
B0 Filter Time		
0		
DO Reset Value		
0		

3:MODBUS TCP

4:Websocket

(7) Local Port Number

本地端口号,如果 MODBUS 协议请用 502 端口

(8) Remote Port Number

远程端口号

(9) Remote Server IP

远程服务器 IP,工作模式为 TCP Client 和 UDP 时,需要填写。其他工作模式默认值即可。

(10) DI input Mode

选择计数的模式,根据连接的传感器选择。

- 0: 计数模式 0, 编码器 AB 信号输入
- 1: 计数模式 1, 两路独立的计数器输入

(11) Pulse multiple

设置工程值的脉冲倍率,实际的工程值等于脉冲倍率乘以脉冲数。

(12) Encoder Pulse per Revolution

编码器的每转脉冲数,如果需要测量转速,请根据实际 参数设置。模块自动换算转速。

(13) DI0~DI1 Pulse per Revolution

DI 的每转脉冲数,如果需要测量转速,请根据实际参数设置。模块自动换算转速。

(14) Is DI NPN or PNP?

DI 是 NPN 还是 PNP 输入,根据实际情况设置。

选择 NPN 输入后,内部接通上拉电压到电源正,上拉电阻为 10K 欧姆;选择 PNP 输入,内部关断上拉电压。

(15) DI Data Auto Send Setting

选择输入DI接收到开关数据后是否自动上传。

0:不上传; 1:上升沿上传数据; 2:下降沿上传数据 3:上升和下降沿都上传数据,这个模式下计数值会是 实际的两倍。

(16) Auto Command

模块内部自动发送指令。然后把这个指令的回复发送给所有连接上的设备

(17) Auto Command Time

模块内部自动发送指令的时间间隔,取值范围是 0 到 65535。如果是 0,代表关闭自动发送,如果大于 0,代 表打开自动发送,且数值是自动发送指令的时间间隔,单位是 mS (毫秒)。

(18) A0~B0 Filter Time

DI0~DI3 的滤波时间。取值范围是 0 到 65535。

如果是 0,代表不滤波;其他值代表滤波的时间,单位 是 mS (毫秒)。如果 DI 输入点是机械开关或者是机械 继电器,建议设置滤波时间为 50mS。

Firmware config version 'V1.0'

			(19) DO Reset Value DO 复位后自动输出的状态
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11:18 192.168.4.1 wifi8 登录	▼ 77% ■ ・	4,设置成功 模块会自动重启,然后自动连接当前的 WiFi。
Configuration : from WiFi AP t	saved. Please disc o continue!	connect	

Modbus TCP 协议

(1)、Modbus TCP 数据帧:

在 TCP/IP 以太网上传输,支持 Ethernet II 和 802.3 两种帧格式。图 3 所示, Modbus TCP 数据帧包含报文头、功能代码和数据 3 部分。

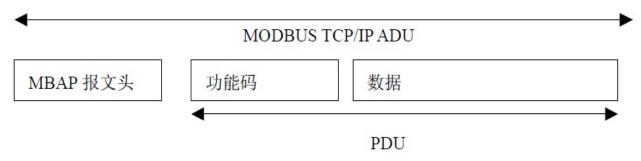


图 6: TCP/IP 上的 MODBUS 的请求/响应

(2)、MBAP报文头描述:

MBAP 报文头(MBAP、Modbus Application Protocol、Modbus 应用协议)分 4 个域,共 7 个字节,如表 1 所示。 表 1: MBAP 报文头

域	长度 (B)	描述
传输标识	2 个字节	标志某个MODBUS 询问/应答的传输
协议标志	2 个字节	0=MODBUS 协议
长度	2 个字节	后续字节计数
单元标识符	1 个字节	串行链路或其它总线上连接的远程从站的识别码

(3)、Modbus 功能代码:

Modbus 功能码分为 3 种类型,分别是:

- (1)公共功能代码:已定义好的功能码,保证其唯一性,由 Modbus.org 认可;
- (2)用户自定义功能代码有两组,分别为65~72和100~110,无需认可,但不保证代码使用的唯一性。如变 为公共代码,需交RFC认可;
- (3)保留的功能代码,由某些公司使用在某些传统设备的代码,不可作为公共用途。

在常用的公共功能代码中, IBF161 支持部分的功能码, 详见如下:

功能码		名称	说明
01	Read Coil Status	读取线圈状态	1表示高电平, 0表示低电平。
03	Read Holding Register	读保持寄存器	1表示高电平, 0表示低电平。
05	Write Single Coil	写单个线圈	1表示三极管导通,0表示三极管断开。
06	Write Single Register	写单个寄存器	1表示三极管导通,0表示三极管断开。
15	Write Multiple Coils	写多个线圈	
16	Write Multiple Registers	写多个寄存器	

(4)、支持的功能码描述

01(0x01)读线圈

在一个远程设备中,使用该功能码读取线圈的1至2000连续状态。请求PDU详细说明了起始地址,即指定 的第一个线圈地址和线圈编号。从零开始寻址线圈。因此寻址线圈1-16 为0-15。

根据数据域的每个位(bit)将响应报文中的线圈分成为一个线圈。指示状态为1= ON 和0= OFF。第一个数 据作为字节的LSB(最低有效位),后面的线圈数据依次向高位排列,来组成8位一个的字节。如果返回的输出数 量不是八的倍数,将用零填充最后数据字节中的剩余位(bit)(一直到字节的高位端)。字节数量域说明了数据的 完整字节数

功能码 01 举例, 读 8 通道 DI 数据, 寄存器地址 00033~00040:

请求			响应		
字段名称		十六进制	字段名称		十六进制
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		06			04
	单元标识符	01		单元标识符	01
功能码		01	功能码		01
起始地址 Hi		00	字节数		01
起始地址 Lo		20	输出状态 DI7-DI0		00
输出数量 Hi		00			
输出数量 Lo		08			

03(0x03)读保持寄存器

在一个远程设备中,使用该功能码读取保持寄存器连续块的内容。请求PDU说明了起始寄存器地址和寄存器 数量。从零开始寻址寄存器。因此,寻址寄存器1-16 为0-15。在响应报文中,每个寄存器有两字节,第一个字 节为数据高位,第二个字节为数据低位。

功能码 03 举例,读 8 通道 DI 数据,寄存器地址 40033:

请求			响应		
字段名称		十六进制	字段名称		十六进制
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		06			05
	单元标识符	01		单元标识符	01
功能码		03	功能码		03
起始地址 Hi		00	字节数		02
起始地址 Lo		20	寄存器值 Hi(0x00)		00
寄存器编号 Hi		00	寄存器值 Lo(DI7-DI0)		00
寄存器编号I	۵.	01			

05(0x05)写单个线圈

在一个远程设备上,使用该功能码写单个输出为ON 或OFF。请求PDU说明了强制的线圈地址。从零开始寻 址线圈。因此,寻址线圈地址1为0。线圈值域的常量说明请求的ON/OFF 状态。十六进制值0xFF00请求线圈为 ON。十六进制值0x0000请求线圈为OFF。其它所有值均为非法的,并且对线圈不起作用。 正确的响应应答是和请求一样的。

功能码 05 举例,设置通道 DO0 为 ON,也就是为 1,寄存器地址 00001:

请求			响应		
字段	字段名称		字段	名称	十六进制
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		06			06
	单元标识符	01		单元标识符	01
功能码		05	功能码		05
输出地址 Hi		00	输出地址 Hi		00
输出地址 Lo		00	输出地址 Lo		00
输出值 Hi		FF	输出值 Hi		FF
输出值 Lo		00	输出值 Lo		00

06(0x06)写单个寄存器

ShenZhen Beifu Technology Co.,Ltd

在一个远程设备中,使用该功能码写单个保持寄存器。请求PDU说明了被写入寄存器的地址。从零开始寻址 寄存器。因此,寻址寄存器地址1为0。

正确的响应应答是和请求一样的。

功能码 06 举例,设置通道 DO0~DO7 全部为 1,16 进制为 0xFF,寄存器地址 40001:

	请求		响应		
字段名称		十六进制	字段名称		十六进制
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		06			06
	单元标识符	01		单元标识符	01
功能码		06	功能码		06
寄存器地址Hi		00	寄存器地址Hi		00
寄存器地址Lo		00	寄存器地址Lo		00
寄存器值Hi		00	寄存器值Hi		00
寄存器值Lo		FF	寄存器值Lo		FF

15(0x0F)写多个线圈

在一个远程设备上,使用该功能码写多个输出为ON 或OFF。请求PDU说明了强制的线圈地址。从零开始寻 址线圈。因此,寻址线圈地址1为0。线圈值域的常量说明请求的ON/OFF 状态。数据由16进制换算成二进制按位 排列,位值为1请求线圈为ON,位值为0请求线圈为OFF。

功能码 15 举例,设置通道 DO0, DO1 为 ON,也就是为 00000011,寄存器地址 00001:

	请求		响应		
字段名称		十六进制	字段	:名称	十六进制
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		06			06
	单元标识符	01		单元标识符	01
功能码		0F	功能码		0F
开始地址 Hi		00	开始地址 Hi		00
开始地址 Lo		00	开始地址 Lo		00
线圈数量 Hi		00	线圈数量 Hi		00
线圈数量 Lo		02	线圈数量 Lo		02
字节数		01			
输出值		02			

16(0x10)写多个寄存器

在一个远程设备中,使用该功能码写多个保持寄存器。请求PDU说明了被写入寄存器的地址。从零开始寻址

ShenZhen Beifu Technology Co.,Ltd

寄存器。因此,寻址寄存器地址1为0。功能码16举例,设置通道DO0和DO1的PWM值为5和6,寄存器地址40001:

请求		响应			
字段名称		十六进制	字段名称		十六进制
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		06			06
	单元标识符	01		单元标识符	01
功能码	功能码		功能码		10
开始寄存器地	开始寄存器地址Hi		开始寄存器地址Hi		00
开始寄存器地	开始寄存器地址Lo		开始寄存器地址Lo		00
寄存器数量Hi		00	寄存器数量Hi		00
寄存器数量Lo		02	寄存器数量Lo		02
字节数		04			
寄存器值Hi		00			
寄存器值Lo		05			
寄存器值Hi		00			
寄存器值Lo		06			

(5)、IBF161 的寄存器地址说明(注:地址都是10进制数)

支持功能码 01, 05, 15 的寄存器

地址 0X (PLC)	地址 (PC, DCS)	数据内容	属性	数据说明
00001	0	DO 输出状态	读/写	(默认值为0)
				0 为输出低电平,
				1 为输出高电平
00033	32	A0 输入状态	只读	DI 通道 0~3 的电平状态
00034	33	B0 输入状态	只读	0表示低电平输入,
				1表示高电平输入
00043	42	 A0 输入状态	月读	DI通道 0~3 的电平状态,为 00033~00036
00044	43	B0 输入状态	只读	取反后的值。
				1表示低电平输入,
				0表示高电平输入

支持功能码03,06,16的寄存器,计数模式请在配置网页里设置,数据只在对应的计数模式里有效。

地址 4X (PLC)	地址 (PC, DCS)	数据内容	属性	数据说明
40001~40002	0~1	编码器计数	读/写	编码器计数器(计数模式 0)
				数据为有符号的长整数,16进制格式,负
				数采用的是补码(two's complement),
				正数 (0x00000000~0x7FFFFFF),
				负数(0xFFFFFFFF~0x80000001),
				存储顺序为 CDAB。
				计数器清零直接向对应寄存器写入0,
				也可以根据需要写入其他值。
40003~40004	2~3	编码器 4 倍频计数	读/写	编码器 4 倍频计数器 (计数模式 0)
				数据为有符号的长整数,16进制格式,负
				数采用的是补码(two's complement),
				正数 (0x00000000~0x7FFFFFF),
				负数(0xFFFFFFFF~0x80000001),
				存储顺序为 CDAB。
				计数器清零直接向对应寄存器写入0,
				也可以根据需要写入其他值。
40005~40006	4~5	编码器的工程值	只读	编码器的工程值 (计数模式 0)
				数据为 32 位浮点数
				存储顺序为 CDAB。
				是由编码器 4 倍频计数器的值乘以网页上
				设置的脉冲倍率得到的值
40007~40008	6~7	编码器的频率	只读	编码器的脉冲频率(计数模式 0)
		(浮点数)		数据为32位浮点数,读不了浮点数格式请

ShenZhen Beifu Technology Co.,Ltd

		Shenz	Linen Beiju Technology Co.,Liu
			读 40009~40010 寄存器。
			存储顺序为 CDAB。
8~9	编码器的频率	只读	编码器的脉冲频率(计数模式 0)
	(长整数)		数据为32位有符号长整数
			存储顺序为 CDAB。
10~11	编码器的转速	只读	编码器的转速 (计数模式 0)
			数据为32位有符号长整数
			存储顺序为 CDAB。
			转速是根据配置网页里设定的脉冲数换算
			得到。
地址(PC,DCS)	数据内容	属性	数据说明
16~17	通道 A0 脉冲计数	读/写	通道 A0~B0 计数器(计数模式 1)
18~19	通道 B0 脉冲计数	读/写	长整数(0x00000000~0xFFFFFFF),
			无符号,存储顺序为 CDAB
			计数器清零直接向对应寄存器写入0,
			也可以根据需要写入其他值。
20~21	通道 A0 的工程值	只读	通道 A0~B0 的工程值(计数模式 1)
22~23	通道 B0 的工程值	只读	数据为32位浮点数
			存储顺序为 CDAB。
			- 是由通道 A0~B0 计数器的值乘以网页上设
			置的脉冲倍率得到的值
ĺ		1	
67		读/写	无符号整数,默认为 0,修改这个寄存器
67	计数清零寄存器	读/写	
67	计数清零寄存器	读/写	用于清零编码器计数器或通道计数器。修
67	计数清零寄存器	读/写	用于清零编码器计数器或通道计数器。修 改后寄存器会自动恢复为 0。
67	计数清零寄存器	读/写	用于清零编码器计数器或通道计数器。修改后寄存器会自动恢复为 0。 写入 10:设置编码器计数值为 0,
67	计数清零寄存器	读/写	用于清零编码器计数器或通道计数器。修改后寄存器会自动恢复为 0。 写入 10:设置编码器计数值为 0, 写入 11:设置 4 倍编码器计数值为 0,
67	计数清零寄存器	读/写	用于清零编码器计数器或通道计数器。修改后寄存器会自动恢复为 0。 写入 10:设置编码器计数值为 0, 写入 11:设置 4 倍编码器计数值为 0, 写入 20:设置通道 A0 计数值为 0,
67	计数清零寄存器	读/写	写入 10: 设置编码器计数值为 0, 写入 11: 设置 4 倍编码器计数值为 0, 写入 20: 设置通道 A0 计数值为 0, 写入 21: 设置通道 B0 计数值为 0,
67	计数清零寄存器	读/写	用于清零编码器计数器或通道计数器。修改后寄存器会自动恢复为 0。 写入 10:设置编码器计数值为 0, 写入 11:设置 4 倍编码器计数值为 0, 写入 20:设置通道 A0 计数值为 0,
100~101	计数清零寄存器 通道 A0 转速	读/写	用于清零编码器计数器或通道计数器。修改后寄存器会自动恢复为 0。 写入 10:设置编码器计数值为 0, 写入 11:设置 4 倍编码器计数值为 0, 写入 20:设置通道 A0 计数值为 0, 写入 21:设置通道 B0 计数值为 0, 写入 22:设置通道 A0 和 B0 计数值为 0。
	地址 (PC, DCS) 16~17 18~19	(长整数) 10~11 编码器的转速 地址 (PC, DCS) 数据内容 16~17 通道 A0 脉冲计数 18~19 通道 B0 脉冲计数	8~9 编码器的频率 (长整数) 只读 10~11 编码器的转速 只读 地址 (PC, DCS) 数据内容 属性 16~17 通道 A0 脉冲计数 读/写 18~19 通道 B0 脉冲计数 读/写

				存储顺序为 CDAB,
				转速是根据配置网页里设定的脉冲数换算
				得到。
40129~40130	128~129	通道 A0 脉冲频率	只读	通道 A0~B0 频率 (计数模式 1)
40131~40132	130~131	通道 B0 脉冲频率	只读	长整数(0x00000000~0xFFFFFFF),
				通道 A0~B0 的脉冲频率, 无符号, 存储顺
				序为 CDAB。需要浮点数可以读寄存器
				40145~40148
40145~40146	144~145	通道 A0 脉冲频率	只读	通道 A0~B0 频率 (计数模式 1)
40147~40148	146~147	通道 B0 脉冲频率	只读	通道 A0~B0 的脉冲频率,数据为 32 位浮
				点数,存储顺序为 CDAB。
				如果设备读不了浮点数可以读寄存器
				40129~40132
40211	210	模块名称	只读	高位: 0x01 低位: 0x61

字符协议Socket通讯

在 TCP Server,TCP Client,UDP Mode,Web Socket 等工作方式下,可以使用以下字符协议通讯。

计数模式请在配置网页里设置,数据只在对应的计数模式里有效。

如果在网页配置设置里 "DI Data Auto Send Setting"不为"0",则模块在开关量变化时会自动发送一个数据到 已连接的设备。数据格式为 \mathbf{S} (通道号)(空格)(当前通道的计数值)(回车符),例如,通道 0 收到了一个脉冲会 发送 S0 0000000001, 通道 1 收到了第 1000 个脉冲会发送 S1 0000001000。

用户同时还可以使用以下命令来读取数据。如果是测量速度等情况下,避免接收到的数据太大无法处理,可 以设置"DI Data Auto Send Setting"为"0"关闭自动上传。

1、读取开关状态命令

明:从模块中读回所有输出通道开关量状态、开关量复位状态和输入通道开关量状态。 说

命令格式: #01

应答格式: > CC (cr) 命令有效。

> ?01(cr) 命令无效或非法操作。

参数说明:> 分界符。十六进制为 3EH

CC 代表读取到的 DI 输入开关状态, 2 个数, 排列顺序为 B0~A0,

输入低电平; 值为 1: 输入高电平 值为 0:

用户命令(字符格式) 应用举例: #01

> 模块应答(字符格式) > 01

明:模块输入开关状态是 01,排列顺序为 B0~A0

通道 B0: 低电平 通道 A0: 高电平

2、读计数器数据命令

明:读取计数器的数据,可以读所有通道,也可以读单通道。

读通道 A0~通道 B0 计数器数据(计数模式 1) 命令格式: #012

应答格式: !AAAAAAAA, AAAAAAAA (cr)

命令格式: #0120 读通道 A0 计数器数据(计数模式 1)

命令格式: #0121 读通道 B0 计数器数据(计数模式 1)

应答格式: !AAAAAAAA(cr)

命令格式: #0122 读编码器计数器数据(计数模式 0)

命令格式: #0123 读编码器 4 倍频计数器数据(计数模式 0)

应答格式: !+AAAAAAAA(cr)

应用举例 1: 用户命令(字符格式) #012

模块应答(字符格式) !0012345678, 0012345678 (cr)

明: 所有通道的计数值为 12345678。

应用举例 2: 用户命令(字符格式) #0120

> 模块应答(字符格式) !0012345678(cr)

明: 通道 A0 的计数值为 12345678。

3、读输入频率命令

明: 读取输入的频率,可以读所有通道,也可以读单通道。

命令格式: #013 读通道 A0~通道 B0 输入频率(计数模式 1)

应答格式: !AAAAA.AA,AAAAA.AA (cr)

命令格式: #0130 读通道 A0 输入频率 (计数模式 1)

命令格式: #0131 读通道 B0 输入频率(计数模式 1)

应答格式: !AAAAA.AA (cr)

命令格式: #0132 读编码器输入频率(计数模式 0)

应答格式: !+AAAAA.AA(cr)

应用举例 1: 用户命令(字符格式) #013

> 模块应答(字符格式) !00100.00,00100.00 (cr)

明: 所有通道的输入频率值为 100Hz。

应用举例 2: 用户命令(字符格式) #0130

> 模块应答(字符格式) !00100.00 (cr)

明:通道 A0 的输入频率值为 100Hz。

4、读计数器工程值命令

明:读取计数器的工程值数据,可以读所有通道,也可以读单通道。

通道 A0~通道 B0 工程值是由通道 A0~B0 计数器的值乘以网页上设置的脉冲倍率得到的值。 编码器工程值是由编码器 4 倍频计数器的值乘以网页上设置的脉冲倍率得到的值。

命令格式: #015 读通道 A0~通道 B0 计数器工程值数据(计数模式 1)

应答格式: !AAAAAAAAAAA, AAAAAAAAAAA(cr)

命令格式: #0150 读通道 A0 计数器工程值数据(计数模式 1)

命令格式: #0151 读通道 B0 计数器工程值数据(计数模式 1)

应答格式: !AAAAAAAA.AAAAA(cr)

命令格式: #0152 读编码器计数器工程值数据(计数模式 0)

应答格式: !+AAAAAAAAAAA(cr)

应用举例 1: 用户命令(字符格式) #015

> 模块应答 (字符格式) !1000.000000, 1000.000000 (cr)

说 明: 所有通道的工程值为 1000。

应用举例 2: 用户命令(字符格式) #0152

> 模块应答(字符格式) !5000.000000(cr)

说 明:编码器的工程值为 5000。

5、读输入转速命令

明: 读取输入的转速,可以读所有通道,也可以读单通道。

命令格式: #018 读通道 A0~通道 B0 输入转速。(计数模式 1)

应答格式: !AAAAA,AAAAA (cr)

命令格式: #0180 读通道 A0 输入转速(计数模式 1)

命令格式: #0181 读通道 B0 输入转速(计数模式 1)

应答格式: !AAAAA (cr)

命令格式: #0182 读编码器输入转速(计数模式 0)

应答格式: !+AAAAA (cr)

用户命令(字符格式) 应用举例 1: #018

> 模块应答(字符格式) !01000,01000 (cr)

明: 通道 A0~B0 的输入转速值为 1000 转。

用户命令(字符格式) 应用举例 2: #0180

> 模块应答(字符格式) !01000(cr)

明:通道 A0 的输入转速值为 1000 转。

6、修改计数器的数值命令

明:修改计数器的值,也可以设置为零重新计数。

命令格式: **\$0110(data)** 修改通道 A0 的计数值(**计数模式** 1)

命令格式: **\$0111(data)** 修改通道 B0 的计数值(计数模式 1)

命令格式: \$0112(data) 修改编码器计数器的计数值(计数模式 0)

命令格式: \$0113(data) 修改编码器 4 倍频计数器的计数值(计数模式 0)

应答格式: !01(cr) 表示设置成功

应用举例 1: 用户命令(字符格式) \$0112+0

> 模块应答(字符格式) ! 01(cr)

说明:设置编码器计数器的计数值为0。

应用举例 2: 用户命令(字符格式) \$0113+1000

> 模块应答(字符格式) ! 01(cr)

明:设置编码器 4 倍频计数器的计数值为 1000。

应用举例 3: 用户命令(字符格式) \$0110+0

> 模块应答 (字符格式) ! 01(cr)

明:设置通道A0的计数值为0。

7、设置 DO 输出

明:设置 DO 电平输出。

命令格式: \$01UWA A取值0或1,0表示低电平输出,1表示高电平输出。

应答格式: !01(cr) 表示设置成功

应用举例: 用户命令(字符格式) **\$01UW0**

> 模块应答(字符格式) ! 01(cr)

明:设置 DO 输出低电平。

8、读取 DO 输出

明: 读取 DO 输出的电平。

命令格式: \$01UR 读取 DO 输出电平 0 表示低电平输出, 1 表示高电平输出。

应答格式: !A(cr) A取值0或1,代表输出电平,0表示低电平输出,1表示高电平输出。

应用举例: 用户命令(字符格式) **\$01UR**

模块应答(字符格式) !1(cr)

说 明: DO 输出是高电平。

网页上的操作与设置

如果模块已经连接上了当地的wifi,可以在电脑或手机浏览器中输入模块IP,例如: 192.168.0.7,可打开模块网页(前提是电脑IP或手机IP与模块在相同网段,登陆网页要根据当前模块的IP地址来登陆操作),输入账号wifi8密码12345678,即可进入模块配置界面。在配置界面里,可以把"Work Mode"设置4也就是websocket,保存后等待10秒,然后输入192.168.0.7/w,可以直接进入websocket,如果你的IP不是192.168.0.7,你可以在你实际IP后加/w就可以进入websocket。建议使用Google Chrome浏览器或者IE10浏览器进行测试。Websocket网页界面如下:

← → × ① 192.168.0.7/w

Wohanahat
Websocket
Websocket Wifi Config
Connect to Websocket
Websocket is not connected
☐ Send as HEX Add nothing ✓☐ Send cyclic 1000 ☐ ms Stop Send: Send
Send count: 0 Reset
Recv count: 0 Reset Receive: □ Receive as HEX

Clear

点击 connect to websocket 后,如果连接上会显示绿色的已连接,然后就可以发字符协议的命令进行数据的读取。

IBF161 的常见问题

1, 如何根据灯光判断模块的状态

灯光 1S 亮 2 次: 模块在等待配置的 AP 模式,可以用手机连接模块的 wifi8 网络设置参数。

灯光 1S 亮 1 次:模块正在在连接 wifi 中,如果长时间无法连接上,请重新设置模块的 wifi 参数。

灯光 58 亮 1 次: 模块已经连接上 wifi 中,正常工作中。

2, 跨网段问题

如果设备的IP与通信的PC不在一个网段内,并且是处于网线直连,或者同在一个子路由器下面,那么两者是根 本无法通信的。

举例:

设备IP: 192.168.0.7 子网掩码: 255.255.255.0 PC的IP: 192.168.1.100 子网掩码: 255.255.255.0

由于设备的IP为192.168.0.7,那么导致在PC上无法登陆设备网页,也无法ping通它。

如果您想两者能够通信,就需要把设备跟 PC 的子网掩码、还有路由器上的子网掩码都设置成 255.255.0.0,这样就能登陆模块网页了。

3,设备能ping通但网页打不开

可能有几个原因造成:

- 1) 设备设置了静态IP与网络中的现有设备IP冲突
- 2) HTTP server port被修改(默认应该为80)
- 3) 其他原因

解决办法: 重新给设备设置一个未被使用的 IP; 恢复出厂设置或者打开浏览器时输入正确的端口。

4,每隔一段时间,发生掉线重连

每隔一段时间,会发生掉线重连现象

原因: 串口服务器跟其他设备有IP地址冲突的问题

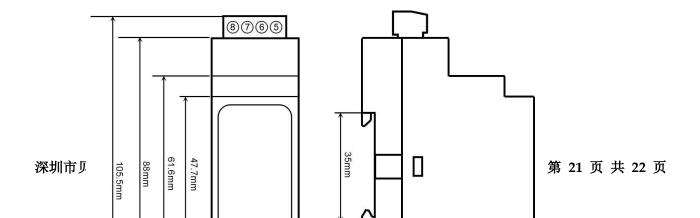
5,通信不正常,网络链接不上,或者搜索不到

当前所用电脑的防火墙需要关闭(在windows防火墙设置里)

三个本地端口,不能冲突,也就是必须设置为不同值,默认23、26、29

有着非法的MAC地址,比如全FF的MAC地址,可能会出现无法连接目标IP地址的情况,或者MAC地址重复。 非法的 IP 地址,比如网段与路由器不在一个网段,可能无法访问外网。

6, 硬件问题查找


电源适配器供电不好,或者插头接触不良

电源灯不亮, 网口灯也不亮, 那就是没供电或者硬件坏了

7, MODBUS TCP连接不上

工作模式要设置为modbus TCP, 端口号只能是502, 不能是其他数值。

外形尺寸: (单位: mm)

可以安装在标准 DIN35 导轨上

保修:

本产品自售出之日起两年内,凡用户遵守贮存、运输及使用要求,而产品质量低于技术指标的,可以返厂免 费维修。因违反操作规定和要求而造成损坏的,需交纳器件费用和维修费。

版权:

版权 © 2022 深圳市贝福科技有限公司。

如未经许可,不得复制、分发、翻译或传输本说明书的任何部分。本说明书如有修改和更新,恕不另行通知。

商标:

本说明书提及的其他商标和版权归各自的所有人所有。

版本号: V1.0 日期: 2022年1月