

RS232/RS485信号转12路模拟信号 隔离D/A转换器IBF34

产品特点:

- RS-485/232接口,隔离转换成12路标准模拟信号输出
- 可选型输出4-20mA或0-10V控制其他设备
- 模拟信号输出精度优于 0.2%
- 可以程控校准模块输出精度
- 信号输出 / 通讯接口之间隔离耐压3000VDC
- 宽电源供电范围: 10~30VDC
- 可靠性高,编程方便,易于安装和布线
- 用户可编程设置模块地址、波特率等
- 支持 Modbus RTU 通讯协议,自动识别协议
- 标准DIN35导轨安装,可插拔接线端子
- 外形尺寸: 128 x 132 x 58mm

典型应用:

- 0-10V标准模拟信号输出
- 智能楼宇控制、安防工程等应用系统
- RS-232/485总线工业自动化控制系统
- 灯光控制, LED智能调光控制
- 设备运行调试与控制
- 传感器信号的远程传输及信号还原
- 工业现场执行器数据给定
- 医疗、工控产品开发
- 4-20mA 信号输出

图1 IBF34 模块外观图

产品概述:

IBF34系列产品实现主机RS-485/232接口信号隔离转换成标准模拟信号,用以控制远程设备。IBF34系列产品可应用在 RS-232/RS-485总线工业自动化控制系统,4-20mA,0-5V,0-10V等标准信号输出,用来控制工业现场的执行设备,控制设备以及显示仪表等等。

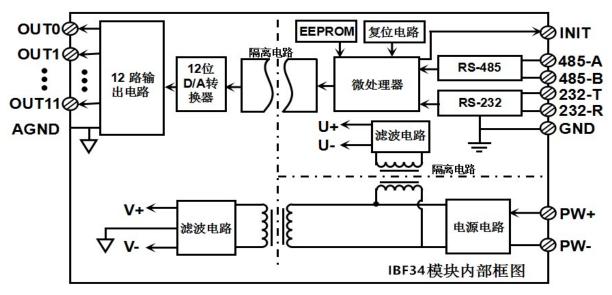


图2 IBF34 产品原理框图

UF

ShenZhen Beifu Technology Co.,Ltd

产品包括电源隔离,信号隔离、线性化,D/A转换和RS-485串行通信。每个串口最多可接255只 IBF34系列模块,通讯方式采用ASCII码通讯协议和MODBUS RTU通讯协议,自动识别通讯协议并回复,波特率可由代码设置,能与其他厂家的控制模块挂在同一RS-485总线上,便于计算机编程。

IBF34系列产品是基于单片机的智能监测和控制系统,所有的用户设定的校准值,地址,波特率,数据格式,校验和状态等配置信息都储存在非易失性存储器EEPROM里。

IBF34系列产品按工业标准设计、制造,信号输出 / 通讯接口之间隔离,可承受3000VDC隔离电压,抗干扰能力强,可靠性高。工作温度范围- 45℃~+80℃。

IBF34功能简介:

IBF34 信号隔离D/A转换模块,可以用来输出12路共地的电流或电压信号。

1、模拟信号输出

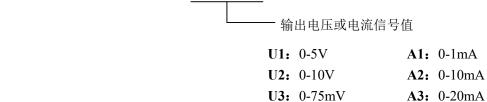
12 位输出精度,产品出厂前所有信号输出范围已全部校准。在使用时,用户也可以很方便的自行编程校准。 具体电流或电压输出量程请看产品选型,12 路输出选型必须相同。

2、 通讯协议

通讯接口: 1 路标准的 RS-485 通讯接口和 1 路标准的 RS-232 通讯接口,可同时通讯互不干扰。

通讯协议:支持两种协议,命令集定义的字符协议和 MODBUS RTU 通讯协议。模块自动识别通讯协议,能实现与多种品牌的 PLC、RTU 或计算机监控系统进行网络通讯。

数据格式: 10位。1位起始位,8位数据位,1位停止位。


通讯地址(0~255)和波特率(2400、4800、9600、19200、38400、57600、115200bps)均可设定;通讯网络最长距离可达1200米,通过双绞屏蔽电缆连接。

通讯接口高抗干扰设计,±15KV ESD 保护,通信响应时间小于 100mS。

3、 抗干扰

可根据需要设置校验和。模块内部有瞬态抑制二极管,可以有效抑制各种浪涌脉冲,保护模块,内部的数字滤波,也可以很好的抑制来自电网的工频干扰。

产品选型:

 $U(A)\square$

 U3: 0-75mV
 A3: 0-20mA

 U4: 0-2.5V
 A4: 4-20mA

 U5: 0-±5V
 A5: 0-±1mA

 U6: 0-±10V
 A6: 0-±10mA

 U7: 0-±100mV
 A7: 0-±20mA

 U8: 用户自定义
 A8: 用户自定义

选型举例 1: 型号: **IBF34-232/485-A4** 4-20mA 信号输出 选型举例 2: 型号: **IBF34-232/485-U2** 0-10V 信号输出 选型举例 3: 型号: **IBF34-232/485-A7** 0-±20mA 信号输出

IBF34 - 232/485

IBF34通用参数:

(typical @ +25℃, Vs为24VDC)

输出类型: 电流输出 / 电压输出

精 度: 0.2%

输出失调: 电流输出 ±0.5 uA/℃ , 电压输出 ±0.1 mV/℃

温度漂移: ±20 ppm/℃ (±30 ppm/℃, 最大)

输出带载能力: 电流输出 350Ω (4-20mA/0-20mA/0-±20mA电流输出)

电压输出 10mA(0-5V/0-10V/0-±5V电压输出)

通 讯: 协议 RS-485 和 RS-232 标准字符协议 和 MODBUS RTU通讯协议

波特率(2400、4800、9600、19200、38400、57600、115200bps)可软件选择

地址 (0~255) 可软件选择

通讯响应时间: 100 ms 最大

工作电源: +10~30VDC 宽供电范围,内部有防反接和过压保护电路

功率消耗: 小于5W

工作温度: -45~+80℃

工作湿度: 10~90%(无凝露)

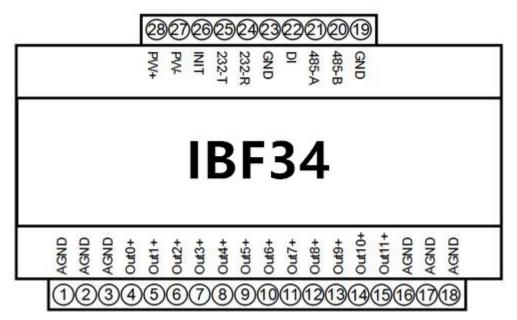
存储温度: -45~+80℃

存储湿度: 10~95%(无凝露)

隔离耐压: 通讯接口 / 输出 / 电源 之间 三隔离: 3KVDC, 1 分钟,漏电流 1mA

其中12路模拟量共地输出。

耐冲击电压: 3KVAC, 1.2/50us(峰值)


外形尺寸: 128mm x 132 mm x 58mm

引脚定义:

引脚	名称	描述	引脚	名 称	描述
1	AGND	模拟信号输出公共地端	15	Out11+	模拟信号 11 输出正端
2	AGND	模拟信号输出公共地端	16	AGND	模拟信号输出公共地端
3	AGND	模拟信号输出公共地端	17	AGND	模拟信号输出公共地端
4	OutO+	模拟信号0输出正端	18	AGND	模拟信号输出公共地端
5	Out1+	模拟信号1输出正端	19	GND	数字信号输出地
6	Out2+	模拟信号 2 输出正端	20	485-B	RS-485 信号负端
7	Out3+	模拟信号3输出正端	21	485-A	RS-485 信号正端
8	Out4+	模拟信号4输出正端	22	DI	DI 输入端
9	Out5+	模拟信号 5 输出正端	23	GND	数字信号输出地
10	Out6+	模拟信号6输出正端	24	232-R	RS-232 信号负端
11	Out7+	模拟信号7输出正端	25	232-T	RS-232 信号正端
12	Out8+	模拟信号8输出正端	26	INIT	初始状态设置
13	Out9+	模拟信号9输出正端	27	PW-	电源负端
14	Out10+	模拟信号 10 输出正端	28	PW+	电源正端

表1 引脚定义

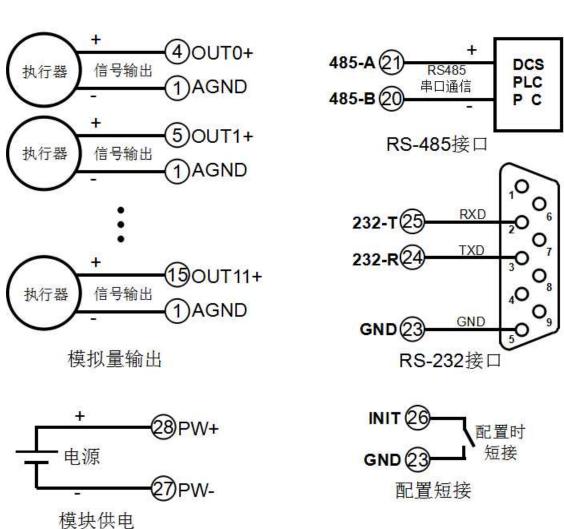


图 3 IBF34 模块接线图

IBF34 字符协议命令集:

模块的出厂初始设置,如下所示:

地址代码为01

波特率 9600 bps

禁止校验和

如果使用 RS-485 网络,必须分配一个独一无二的地址代码,地址代码取值为 16 进制数在 00 和 FF 之间, 由于新模块的地址代码都是一样的,他们的地址将会和其他模块矛盾,所以当你组建系统时,你必须重新配置每 一个 IBF34 模块地址。可以在接好 IBF34 模块电源线和 RS485 通讯线后,通过配置命令来修改 IBF34 模块的地 址。波特率,校验和状态也需要根据用户的要求而调整。而在修改波特率,校验和状态之前,必须让模块先进入 缺省状态, 否则无法修改。

让模块进入缺省状态的方法:

IBF34 模块都有一个特殊的标为 INIT 的管脚。将 INIT 管脚短路接到地线(GND 管脚)后,再接通电源,此时模块 进入缺省状态。在这个状态时,模块的配置如下:

地址代码为00

波特率 9600 bps

禁止校验和

这时,可以通过配置命令来修改 IBF34 模块的波特率,校验和状态等参数。在不确定某个模块的具体配置时, 也可以将 INIT 管脚短路接到地线(GND 管脚),再接通电源,使模块进入缺省状态,再对模块进行重新配置。

字符协议命令由一系列字符组成,如首码、地址 ID,变量、可选校验和字节和一个用以显示命令结束符(cr)。主 机除了带通配符地址"**"的同步的命令之外,一次只指挥一个 IBF34 模块。

命令格式: (Leading Code)(Addr)(Command)[data][checksum](cr)

(Leading code) 首码是命令中的第一个字母。所有命令都需要一个命令首码,如%.\$.#.@....等。 1- 字符

模块的地址代码, 如果下面没有指定, 取值范围从 00~FF (十六进制)。 2- 字符 (Addr)

(Command) 显示的是命令代码或变量值。

变量长度

一些输出命令需要的数据。 [data]

变量长度

[checksum] 括号中的Checksum(校验和)显示的是可选参数,只有在启用校验和时,才需要此选项。 2- 字符

(cr) 识别用的一个控制代码符,(cr)作为回车结束符,它的值为0x0D。 1- 字符

当启用校验和(checksum)时,就需要[Checksum]。它占2-字符。命令和应答都必须附加校验和特性。校验和用来检 查所有输入命令,来帮助你发现主机到模块命令错误和模块到主机响应的错误。校验和字符放置在命令或响应字符之 后,回车符之前。

计算方法:两个字符,十六进制数,为之前所发所有字符的ASCII码数值之和,然后与十六进制数0xFF相与所得。

应用举例:禁止校验和(checksum)

用户命令 \$002(cr)

模块应答 !00020600 (cr)

启用校验和(checksum)

用户命令 \$002B6 (cr)

模块应答 !00020600 A9 (cr)

'\$' = 0x24 '0' = 0x302' = 0x32

B6=(0x24+0x30+0x30+0x32) AND 0xFF

'!' = 0x210' = 0x302' = 0x326' = 0x36

A9=(0x21+0x30+0x30+0x30+0x32+0x30+0x36+0x30+0x30) AND 0xFF

命令的应答:

应答信息取决于各种各样的命令。应答也由几个字符组成,包括首代码,变量和结束标识符。应答信号的首代码

有两种, '!'或'>'表示有效的命令而'?'则代表无效。通过检查应答信息,可以监测命令是否有效

- 注意: 1、在一些情况下,许多命令用相同的命令格式。要确保你用的地址在一个命令中是正确的,假如你用错误的 地址,而这个地址代表着另一个模块,那么命令会在另一个模块生效,因此产生错误。
 - 2、必须用大写字母输入命令。

1、设定通道 N 的模拟量输出值命令

明:以当前配置的数据格式,设定模拟量输出模块通道 N 模拟输出值。

命令格式: #AAN(data)(cr)

参数说明:# 分界符。

- AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII码。 如地址01换成十六进制为30H和31H。
- 通道代号 0~B。如果要同时设置所有通道,通道号用M代替。
- (data) 代表要设置的通道N输出的模拟量数据。数据格式可以是工程单位,FSR的百分比,16进制补码。 详细说明见命令集第3条。
- (cr) 结束符,上位机回车键,十六进制为0DH。

应答格式: >(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明: > 分界符。

(cr) 结束符,上位机回车键,十六进制为 0DH。

其他说明: 假如语法错误或通讯错误或地址不存在,模块不响应。

应用举例: 用户命令(字符格式) #010+16.000(cr)

(十六进制格式) 233031302B31362E3030300D

模块应答(字符格式) >(cr)

(十六进制格式) 3E0D

明:设定地址 01H 模块上 通道 0 的输出值是 +16.000mA (数据格式是工程单位)。

2、设定通道 N 的上电或复位后的模拟量输出值命令

明:以当前配置的数据格式,设定模拟量输出模块通道 N 上电模拟输出值。

命令格式: #AASN(data)(cr)

参数说明: # 分界符。

- AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII码。 如地址01换成十六进制为30H和31H。
- 表示要设置上电或复位后的模拟量输出值。 S
- 通道代号 0~B。如果要同时设置所有通道,通道号用M代替。
- (data) 代表要设置的通道N上电后输出的模拟量数据。数据格式可以是工程单位,FSR的百分比,16进制 补码。详细说明见命令集第3条。
- (cr) 结束符,上位机回车键,十六进制为0DH。

应答格式: >(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明: > 分界符。

(cr) 结束符,上位机回车键,十六进制为 0DH。

其他说明: 假如语法错误或通讯错误或地址不存在,模块不响应。

应用举例: 用户命令 #01S0+04.000(cr)

模块应答 >(cr)

明:设定地址 01H 模块上 通道 0 的上电输出值是 +04.000mA (数据格式是工程单位)。

3、配置模拟量输出模块命令

说 明:对一个模拟量输出模块设置地址,输出范围,波特率,数据格式,校验和状态。配置信息储存在非易失性存储器 EEPROM 里。

命令格式: %AANNTTCCFF(cr)

参数说明:% 分界符。

AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为 01,转换成十六进制为每个字符的 ASCII 码。如地址 01 换成十六进制为 30H 和 31H。

NN 代表新的模块 16 进制地址,数值 NN 的范围从 00 到 FF。

TT 用 16 进制代表类型编码。 IBF34 产品必须设置为 00。

CC 用 16 进制代表波特率编码。

波特率代码	波特率
04	2400 baud
05	4800 baud
06	9600 baud
07	19200 baud
08	38400 baud
09	57600 baud
0A	115200 baud

表 2 波特率代码

FF 用 16 进制的 8 位代表数据格式,校验和。注意从 bits2 到 bits5 不用必须设置为零。

Bit7 Bit 6 Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit 0
------------------	-------	-------	------	-------	-------

表 3 数据格式,校验和代码

Bit7: 保留位,必须设置为零

Bit6: 校验和状态,为 0: 禁止; 为 1: 允许

Bit5-bit2:不用,必须设置为零。

Bit1-bit0:数据格式位。

00: 工程单位(Engineering Units)

01: 满刻度的百分比(% of FSR)

10: 16 进制的补码(Twos complement)

11: 欧姆(ohms)(仅热电阻产品可设置)

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式: !AA(cr) 命令有效。

?AA(cr) 命令无效或非法操作,或在改变波特率或校验和前,没有安装配置跳线。

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 代表模块地址

(cr) 结束符,上位机回车键,十六进制为 0DH。

其他说明:假如你第一次配置模块,AA=00、 NN 等于新的地址。假如重新配置模块改变地址、输出范围、数据格式,AA 等于当前已配置的地址,NN 等于当前的或新的地址。假如要重新配置模块改变波特率或校验和状态,则必须安装配置跳线,使模块进入缺省状态,此时模块地址为 00H,即 AA=00H,NN 等于当前的或新的地址。

假如语法错误或通讯错误或地址不存在,模块不响应。

应用举例: 用户命令 %0011000600(cr)

模块应答 !11(cr)

- 说明:%分界符。
 - 00 表示你想配置的模拟量输出模块原始地址为00H。
 - 11 表示新的模块 16 进制地址为 11H。
 - 00 类型代码, IBF34产品必须设置为00。
 - **06** 表示波特率 9600 baud。
 - 00 表示数据格式为工程单位,禁止校验和。

4、读配置状态命令

- 说 明: 对指定一个模拟量输出模块读配置。
- 命令格式: \$AA2(cr)
- 参数说明: \$ 分界符。
 - AA 模块地址,取值范围 00~FF(十六进制)。
 - 2 表示读配置状态命令
 - (cr) 结束符,上位机回车键,十六进制为 0DH。
- 应答格式: !AATTCCFF(cr) 命令有效。
 - ?AA(cr) 命令无效或非法操作。
- 参数说明:! 分界符。
 - AA 代表模块地址。
 - TT 代表类型编码。
 - CC 代表波特率编码。见表 3
 - FF 见表 4
 - (cr) 结束符,上位机回车键,十六进制为 0DH。
- 其他说明:假如语法错误或通讯错误或地址不存在,模块不响应。
- 应用举例: 用户命令 \$302(cr)
 - 模块应答 !300F0600(cr)
- 说明:!分界符。
 - 30 表示模拟量输出模块地址为30H。
 - 00 表示输出类型代码。
 - **06** 表示波特率 9600 baud。
 - 00 表示数据格式为工程单位,禁止校验和。

5、偏移校准命令

- 说 明:校准模块通道 N 的输出值零点偏移。
- 命令格式: \$AA1N(cr)
- 参数说明: \$ 分界符。
 - **AA** 模块地址,取值范围 00~FF(十六进制)。
 - 1 表示偏移校准命令。
 - N 通道代号 0~B
 - (cr) 结束符,上位机回车键,十六进制为 0DH。
- 应答格式: !AA(cr) 命令有效。
 - ?AA(cr) 命令无效或非法操作。
- 参数说明:! 分界符,表示命令有效。
 - ? 分界符,表示命令无效。
 - AA 代表模块地址
 - (cr) 结束符,上位机回车键,十六进制为 0DH。
- 其他说明:产品出厂时已经校准,用户无需校准即可直接使用。
 - 当对一个模拟量输出模块校准时, 先校准偏移命令后, 再校准增益。

9TF

ShenZhen Beifu Technology Co.,Ltd

在校准时,模拟量输出模块需在要校准的通道上连上万用表监测输出信号,通过命令集第一条命令来设置 模拟量输出,调节到万用表里显示的输出信号为零点值,然后输入校准偏移命令,具体校准方法请看校准 模块章节。

假如语法错误或通讯错误或地址不存在,模块不响应。

应用举例: 用户命令 \$0110(cr)

> 模块应答 !01(cr)

明:对地址 01H 模块的通道 0 进行偏移校准。

6、增益校准命令

说明:校准模块通道 N 的输出值满度增益。

命令格式: \$AA0N(cr)

参数说明:\$ 分界符。

AA 模块地址,取值范围 00~FF(十六进制)。

0 表示增益校准命令。

N 通道代号 0~B

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式: !AA(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符,表示命令有效。

分界符,表示命令无效。

AA 代表模块地址

(cr) 结束符,上位机回车键,十六进制为 0DH。

其他说明:产品出厂时已经校准,用户无需校准即可直接使用。

当对一个模拟量输出模块校准时, 先校准偏移后, 再校准增益。

在校准时,模拟量输出模块需在要校准的通道上连上万用表监测输出信号,通过命令集第一条命令来设置 模拟量输出,调节到万用表里显示的输出信号为满度值,然后输入校准增益命令,具体校准方法请看校准 模块章节。

假如语法错误或通讯错误或地址不存在,模块不响应。

应用举例: 用户命令 \$0100(cr)

> 模块应答 !01(cr)

说 明:对地址 01H 模块的通道 0 进行增益校准。

7、通道 N 的模拟量输出值回读命令

明:模拟量输出模块通道 N 模拟输出值回读,上电输出值回读。如果没有输入过设置命令,则回复错误。

命令格式: \$AADN(cr)

参数说明: \$ 分界符。

AA 模块地址,取值范围 00~FF(十六进制)。

表示模拟量输出值回读命令。 D

通道代号 0~B N

(cr) 结束符,上位机回车键,十六进制为0DH。

应答格式: !AA(data)(cr) 命令有效。

命令无效或非法操作。 ?AA(cr)

参数说明:! 分界符。

AA 模块地址,取值范围 00~FF(十六进制)。

(data) 代表回读到的通道N输出的模拟量数据。数据格式可以是工程单位,FSR的百分比,16进制补码。 详细说明见命令集第3条。

(cr) 结束符,上位机回车键,十六进制为 0DH。

其他说明: 假如语法错误或通讯错误或地址不存在,模块不响应。

应用举例: 用户命令 \$01D0 (cr)

模块应答 !01+12.000 (cr)

说 明: 地址 01H 模块上通道 0 的当前的输出值是 +12.000mA (数据格式是工程单位)。

输出范围和数据格式:

模拟量输出模块使用了3种数据格式:

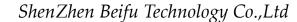
00: 工程单位(Engineering Units)

01: 满刻度的百分比(% of FSR)

10: 16 进制的补码(Twos complement)

	最大	最小	
工程单位	+20.000	+04.000	
满刻度的百分比	+100.00	+020.00	
16 进制的补码	FFF	333	
工程单位	+20.000	±00.000	
满刻度的百分比	+100.00	±000.00	
16 进制的补码	FFF	000	
工程单位	+5.0000	± 0.0000	
满刻度的百分比	+100.00	±000.00	
16 进制的补码	FFF	000	
工程单位	+10.000	±00.000	
满刻度的百分比	+100.00	±000.00	
16 进制的补码	FFF	000	
工程单位	+100.00	±000.00	
满刻度的百分比	+100.00	± 000.00	
16 进制的补码	FFF	000	
	满刻度的百分比 16 进制的补码 工程单位 满刻度的百分比 16 进制的补码 工程单位 满刻度的百分比 16 进制的补码 工程单位 满刻度的百分比 16 进制的补码 工程单位 满刻度的百分比 16 进制的补码	满刻度的百分比+100.0016 进制的补码FFF工程单位 满刻度的百分比 16 进制的补码+20.000 +100.00 FFF工程单位 满刻度的百分比 16 进制的补码+5.0000 +100.00 FFF工程单位 满刻度的百分比 16 进制的补码+10.000 +100.00 FFF工程单位 满刻度的百分比 16 进制的补码+100.00 +100.00 +100.00活刻度的百分比 满刻度的百分比 16 进制的补码+100.00 +100.00	

表 4 输出范围和数据格式


应用举例:

1、输出范围为 A4: 4~20mA,设置输出为 4 mA,命令如下:

工程单位 用户命令 #010+04.000(cr) 满刻度的百分比 用户命令 #010+020.00(cr) 16 进制的补码 用户命令 #010333(cr)

2、输出范围为 U1: 0~5V,设置输出为 3V,命令如下:

工程单位 用户命令 #010+3.0000(cr) 满刻度的百分比 用户命令 #010+060.00(cr) 16 进制的补码 用户命令 #010999(cr)

校准模块:

产品出厂时已经校准,用户无需校准即可直接使用。

使用过程中,你也可以运用产品的校准功能来重新校准模块。在校准时,模块需要使用一个高精度万用表来监测模块的输出。

为了提高校准精度,建议使用以下设备来校准:

1、一个5位半或更高精度的电压/电流测量仪表监测输出信号的准确性

校准过程

- 1. 选择要校准的输出通道,按照模块的输出范围接上对应的电压或电流测量仪表。
- 2. 设置模拟量输出模块需要校准的通道输出零点信号,通常为0mA、4mA或0V等。通过命令集第一条命令来设置模拟量输出,调节到测量仪表里显示的输出信号为零点值。
- 3. 待信号稳定后,向模拟量输出模块发送 偏移校准 \$AA1N 命令(N代表当前正在校准的通道代号,0~B)。
- 4. 设置模拟量输出模块需要校准的通道输出满度信号。通过命令集第一条命令来设置模拟量输出,调节到测量仪表里显示的输出信号为满度值。
- 5. 待信号稳定后,向模拟量输出模块发送增益校准 \$AA0N 命令(N代表当前正在校准的通道代号,0~B)。
- 6. 校准完成

Modbus RTU 通讯协议:

模块有自动识别通讯协议的功能,直接采用Modbus RTU通讯协议通讯即可。

IBF34 模块出厂的初始设置: 地址为 01, 波特率 9600 bps

如果你忘记模块的地址和波特率,可以让模块进入缺省状态,然后查询地址和波特率的寄存器40201-40202,得到模块的实际地址和波特率,也可以跟据需要修改地址和波特率。

让模块进入缺省状态的方法:

IBF34 模块都有一个特殊的标为 INIT 的管脚。将 INIT 管脚短路接到地线(GND1 管脚)后,再接通电源,此时模块进入缺省状态。在这个状态时,模块的配置为: 地址为 01, 波特率 9600 bps。

模块支持的Modbus功能码有03和06。Modbus数据内容与输出的对应关系请参看表4,与字符协议的数据格式为16进制的补码时相同。

Modbus RTU 通讯协议应用举例:

1,支持Modbus RTU通讯协议功能码03(读保持寄存器),命令格式按照标准Modbus RTU通讯协议。

通讯举例:假如模块地址为01,以16进制发送: 01030000001840A,即可取得寄存器的数据。

01	03	00	00	00	01	84	0A
模块地址	读保持寄存器	寄存器地址高位	寄存器地址低位	寄存器数量高位	寄存器数量低位	CRC 校验低位	CRC 校验高位

假如模块回复: 0103020FFFFDF4 即读到的数据为 0x0FFF, 即当前的输出为最大值。

01	03	02	0F	FF	FD	F4
模块地址	读保持寄存器	数据的字节数	数据高位	数据低位	CRC 校验低位	CRC 校验高位

2,支持Modbus RTU通讯协议功能码06(写单个寄存器),命令格式按照标准Modbus RTU通讯协议。通讯举例:假如模块地址为01,以16进制发送: 01060000000FC9CE ,表示设置输出数据为0x000F。

模块地址 写单个寄存器 寄存器地址高位 寄存器地址低位 数据高位 数据低位 CRC 校验低位 CRC 校验高位	01	06	00	00	00	0F	C9	CE
	模块地址	写单个寄存器	寄存器地址高位	寄存器地址低位	数据高位	数据低位	CRC 校验低位	CRC 校验高位

假如模块回复: **0106000000FC9CE** 即设置成功

01	06	00	00	00	0F	C9	CE
模块地址	写单个寄存器	寄存器地址高位	寄存器地址低位	数据高位	数据低位	CRC 校验低位	CRC 校验高位

寄存器说明:

向仔	地址 (PC, DCS)	数据内容	属性	数据说明
40001	0	Out0(0x0000-0x0FFF)	读/写	第0通道模拟量输出值
40002	1	Out1(0x0000-0x0FFF)	读/写	第1通道模拟量输出值
40003	2	Out2(0x0000-0x0FFF)	读/写	第2通道模拟量输出值
40004	3	Out3(0x0000-0x0FFF)	读/写	第3通道模拟量输出值
40005	4	Out4(0x0000-0x0FFF)	读/写	第4通道模拟量输出值
40006	5	Out5(0x0000-0x0FFF)	读/写	第5通道模拟量输出值
40007	6	Out6(0x0000-0x0FFF)	读/写	第6通道模拟量输出值
40008	7	Out7(0x0000-0x0FFF)	读/写	第7通道模拟量输出值
40009	8	Out8(0x0000-0x0FFF)	读/写	第8通道模拟量输出值
40010	9	Out9(0x0000-0x0FFF)	读/写	第9通道模拟量输出值
40011	10	Out10(0x0000-0x0FFF)	读/写	第 10 通道模拟量输出值
40012	11	Out11(0x0000-0x0FFF)	读/写	第 11 通道模拟量输出值
40021	20	Sout0 (0x0000-0x0FFF)	读/写	第0通道上电模拟量输出值
40022	21	Sout1 (0x0000-0x0FFF)	读/写	第1通道上电模拟量输出值
40023	22	Sout2 (0x0000-0x0FFF)	读/写	第2通道上电模拟量输出值
40024	23	Sout3 (0x0000-0x0FFF)	读/写	第3通道上电模拟量输出值
40025	24	Sout4 (0x0000-0x0FFF)	读/写	第4通道上电模拟量输出值
40026	25	Sout5 (0x0000-0x0FFF)	读/写	第 5 通道上电模拟量输出值
40027	26	Sout6 (0x0000-0x0FFF)	读/写	第6通道上电模拟量输出值
40028	27	Sout7 (0x0000-0x0FFF)	读/写	第7通道上电模拟量输出值
40029	28	Sout8 (0x0000-0x0FFF)	读/写	第8通道上电模拟量输出值
40030	29	Sout9 (0x0000-0x0FFF)	读/写	第9通道上电模拟量输出值
40031	30	Sout10 (0x0000-0x0FFF)	读/写	第 10 通道上电模拟量输出值
40032	31	Sout11 (0x0000-0x0FFF)	读/写	第 11 通道上电模拟量输出值
40051	50	Out0~Out11	读/写	同时设置 0~11 通道模拟量输出
		(0x0000-0x0FFF)		值
40052	51	Sout0~Sout11	读/写	同时设置 0~11 通道上电输出值
		(0x0000-0x0FFF)		
40201	0200	模块地址	读/写	整数,重启后生效,范围
				0x0000-0x00FF
40202	0201	波特率	读/写	整数,重启后生效,范围
				0x0004-0x000A
				0x0004 = 2400 bps, 0x0005 =
				4800 bps
				0x0006 = 9600 bps, 0x0007 =
				19200 bps
				0x0008 = 38400 bps, 0x0009 =
				57600 bps
				0x000A = 115200bps
40211	0210	模块名称	只读	高位: 0x00 低位: 0x34

表 5 Modbus Rtu 寄存器说明

外形尺寸: (单位: mm)

保修:

本产品自售出之日起两年内,凡用户遵守贮存、运输及使用要求,而产品质量低于技术指标的,可以返厂免费维修。因违反操作规定和要求而造成损坏的,需交纳器件费用和维修费。

版权:

版权 © 2021 深圳市贝福科技有限公司。

如未经许可,不得复制、分发、翻译或传输本说明书的任何部分。本说明书如有修改和更新,恕不另行通知。

商标:

本说明书提及的其他商标和版权归各自的所有人所有。

版本号: V1.0 日期: 2021年5月